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Abstract: A new approach to the model-independent description of quantum field the-
ories will be introduced in the present work. The main feature of this new approach is
to incorporate in a local sense the principle of general covariance of general relativity,
thus giving rise to the concept of a locally covariant quantum field theory. Such locally
covariant quantum field theories will be described mathematically in terms of covariant
functors between the categories, on one side, of globally hyperbolic spacetimes with
isometric embeddings as morphisms and, on the other side, of ∗-algebras with unital in-
jective ∗-monomorphisms as morphisms. Moreover, locally covariant quantum fields can
be described in this framework as natural transformations between certain functors. The
usual Haag-Kastler framework of nets of operator-algebras over a fixed spacetime back-
ground-manifold, together with covariant automorphic actions of the isometry-group
of the background spacetime, can be re-gained from this new approach as a special
case. Examples of this new approach are also outlined. In case that a locally covariant
quantum field theory obeys the time-slice axiom, one can naturally associate to it certain
automorphic actions, called “relative Cauchy-evolutions”, which describe the dynamical
reaction of the quantum field theory to a local change of spacetime background metrics.
The functional derivative of a relative Cauchy-evolution with respect to the spacetime
metric is found to be a divergence-free quantity which has, as will be demonstrated in
an example, the significance of an energy-momentum tensor (up to addition of scalar
functions) for the locally covariant quantum field theory. Furthermore, we discuss the
functorial properties of state spaces of locally covariant quantum field theories that entail
the validity of the principle of local definiteness.

1. Introduction

Quantum field theory incorporates two main principles into quantum physics, locality
and covariance. Locality expresses the idea that quantum processes can be localized in
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space and time [and, at the level of observable quantities, that causally separated pro-
cesses are exempt from any uncertainty relations restricting their commensurability].
The principle of Poincaré-covariance within special relativity states that there are no
preferred Lorentzian coordinates for the description of physical processes, and thereby
the concept of an absolute space as an arena for physical phenomena is abandoned.Yet it
is still meaningful to speak of events in terms of spacetime points as entities of a given,
fixed spacetime background in the setting of special relativistic physics.

In general relativity, however, spacetime points lose this a priori meaning (cf. the
discussion of the “hole argument” in general relativity in [34]). The principle of general
covariance forces one to regard spacetime points simultaneously as members of several,
locally diffeomorphic spacetimes. It is rather the relations between distinguished events
that have a physical interpretation.

This principle should also be observed when quantum field theory in the presence of
gravitational fields is discussed. A first approximation to such situations is to consider
quantum fields on a given, curved Lorentzian background spacetime where the sources of
the gravitational curvature are described classically and independently of the dynamics
of the quantum fields in that background. Due to the weakness of gravitational interac-
tions compared to elementary particle interactions, this is expected to be a reasonable
approximation which nevertheless has a range of applicability where nontrivial pheno-
mena occur, like particle creation in strong, or rapidly varying, gravitational fields. The
most prominent effects of that sort are the Hawking effect [24] and the Fulling-Unruh
effect [19, 48].

For quantum field theory on Minkowski spacetime, one demands that quantum fields
behave covariantly under Poincaré-transformations, and there are distinct states, like
the vacuum state, or (multi-) particle states tied to the Wigner-type particle concept.
Such states are natural reference states which allow to fix physical quantities in com-
parison with experiments. In contradistinction to this familiar case, a generic spacetime
manifold need not possess any (non-trivial) spacetime symmetries (isometries), and thus
there is in general no restrictive concept of covariance for quantum fields propagating on
an arbitrary, but fixed curved background spacetime. (A similar problem arises already
for quantum fields in flat spacetime coupled to outer classical fields, and most of what
follows applies, mutatis mutandis, also to this case.)

This lack of covariance is a source of serious ambiguities in quantum field theory on
curved spacetime, such as the lack of a natural candidate of a vacuum state or a Wig-
ner-type particle concept. In turn, this leads to ambiguities in the concrete determination
of physical quantities. This problem was observed some time ago by Wald [52] in his
discussion of a renormalization prescription for defining the energy-momentum tensor
of a quantized field on a curved spacetime M with metric tensor g = gµν .

One can define a renormalization procedure for the energy-momentum tensor of
a free quantum field on a curved spacetime by picking a quasifree Hadamard state
ω as “reference state” and normal ordering of creation and annihilation operators in
the GNS-representation of ω. In this way, one arrives at an expression for the quan-
tized energy-momentum tensor as an operator valued distribution, but the problem is
the dependence on the reference state ω: On a generic spacetime without symmetries,
there is in general no preferred quasifree Hadamard state, like the vacuum on Min-
kowski spacetime which is selected by invariance with respect to spacetime symme-
tries. In order to restrict this ambiguity, Wald imposed as a further requirement a prin-
ciple of locality and covariance that states that the energy-momentum tensor should
only locally depend on the spacetime metric; we will outline this condition further be-
low.
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A similar problem occurred in the definition of Wick-polynomials and of renor-
malized perturbation theory on Lorentzian manifolds. We will discuss here the case of
the Wick square, as an illustration of other cases, like the energy-momentum tensor. The
definition of a normal ordered product, or Wick-square, of a field operator ϕ(x) in the
GNS-representation of the reference stateωmay be given in form of the coincidence limit

:ϕ2 :ω (x) = lim
y→x

(ϕ(x)ϕ(y)− ω(ϕ(x)ϕ(y))) .

(The limit procedure has to be properly defined, see, e.g. [7].) Due to the non-unique
choice of a reference state, it turns out that choosing instead of ω a different reference
state ω′ results in changing :ϕ2 :ω (x) to

:ϕ2 :ω′ (x) =:ϕ2 :ω (x)+ f (x)
with some smooth function f . This ambiguity would actually not be very serious at the
level of a description of a quantum field theory in terms of operator algebras, but it enters
into the definition of time-ordered products of Wick-polynomials from which, in turn,
local S-matrix functionals are derived in the sense of perturbation theory whose matrix
elements may be compared with physical processes modelled by interacting fields on
curved spacetime [6]. Furthermore, a more serious ambiguity enters in the course of
the process of infinite renormalization of ultraviolet divergencies in defining the time-
ordered product of Wick-polynomials. There remains a freedom that corresponds to
adding certain products of differential operators contracted withWick-polynomials to the
Lagrangian. While one can show [6] that the perturbative classification of interacting sca-
lar field theories on curved spacetimes is independent of that freedom, the predictive pow-
er of the local S-matrix thus obtained is somewhat limited because the “renormalization
constants” now are, in fact, functions depending on the spacetime points. Therefore, it
seems most desirable to invoke a suitable locality and covariance principle so as to reduce
that ambiguity affecting the S-matrix in a similar way as was done by Wald for the case of
the energy-momentum tensor.And, in fact, in recent work by Hollands andWald [26], this
task has been attacked successfully.We should like to point out that related ideas concern-
ing the renormalization of physical quantities for quantum fields in flat spacetime coupled
to outer electromagnetic fields have been proposed earlier by Dosch and Müller [14].

Let us now briefly look at the locality and covariance condition imposed by Wald
[52] in order to reduce the ambiguity of the renormalized energy-momentum tensor of
the free, massless scalar field. The condition may be formulated as follows. Suppose
that one has a prescription for obtaining T ren

µν (x) on any curved spacetime. Then such a
prescription is local and covariant if the following holds: Whenever one has two space-
times M and M ′ equipped with metrics g and g′, respectively, and for some (arbitrary)
open subset U of M an isometric diffeomorphism κ : U → U ′ onto an open subset U ′
of M ′ (so that κ∗g = g′), then it is required that

α′κ(T
′ren
µν (x

′)) = κ∗T ren
µν (x

′) , x′ ∈ U ′ ,
where α′κ : AM ′(U ′)→ AM(U) is the canonical isomorphism between the local CCR-
algebras AM ′(U ′) of the Klein-Gordon field on M ′ and AM(U) of the Klein-Gordon
field on M (cf. [11, 52]), and T ren

µν is the renormalized energy-momentum tensor.
The crucial content of this condition is that it allows an intrinsic definition of the

energy-momentum tensor for an arbitrary globally hyperbolic spacetime, independent
of the question whether it is part of a larger spacetime. Its basic requisite is the unique
construction of the free scalar field on any globally hyperbolic spacetime.
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The further formalization of this property is the main purpose of the present article.
The most general and most efficient mathematical framework for such a discussion is
provided by the operator-algebraic approach to quantum field theory which was initiated
by Haag and Kastler [23] for quantum field theory on Minkowski spacetime, see also
the monographs [21, 1]. In Sect. 2, we will define a local, generally covariant quantum
field theory as a covariant functor between the category of globally hyperbolic (four-
dimensional) spacetime manifolds with isometric embeddings as morphisms and the
category of C∗-algebras with monomorphisms as morphisms. This generalizes similar
approaches, such as the notion of a local, covariant quantum field recently used in [26],
and is very similar to the concept of a covariant field theory over the class of globally
hyperbolic manifolds defined in [47]. The latter is a generalization of ideas in [12] where
also the setting of categories and functors was used. Our approach seems to have the ad-
vantage of generalizing in a natural manner at the same time all these mentioned concepts
as well as related ideas on generally covariant quantum field theories which appear e.g.
in the famous “Missed opportunities” collection by Dyson [16], or in the works [3, 18,
21, 35]. We will indicate that the theory of a free, scalar Klein-Gordon field on globally
hyperbolic spacetimes is an example for our functorial description of a quantum field
theory. Moreover, it will turn out that the more common concept of a quantum field theory
on a fixed spacetime background described in terms of an isotonous map from bounded
open subregions to C∗-algebras which is covariant when the spacetime possesses iso-
metries (as in the original Haag-Kastler approach on Minkowski-spacetime, as will be
indicated below) is actually a consequence of our functorial description. We will also see
that there is a natural notion of equivalence of locally covariant quantum field theories
induced by the concept of equivalent functors. It will then turn out that the Klein-Gordon
fields with different mass terms provide examples for inequivalent theories.

Section 3 is devoted to a study of the functorial properties of state spaces for locally
covariant quantum field theories. A state space will be introduced as a contravariant
functor between the category of globally hyperbolic spacetimes and the category of du-
al spaces of C∗-algebras, with duals of C∗-algebraic embeddings as morphisms. State
spaces will be characterized which have the property that their “local folia” are invariant
under the functorial action of isometric embeddings of spacetime manifolds. These will
be seen to obey the principle of local definiteness proposed by Haag, Narnhofer and
Stein [22]. We will indicate that the quasifree states of the Klein-Gordon field which
fulfill the microlocal spectrum condition [7] or equivalently, the Hadamard condition
[36, 31], induce such a state space.

In Sect. 4 we will demonstrate that to locally covariant quantum field theories obeying
the time-slice axiom one can associate a dynamics in the form of automorphic actions,
referred to as “relative Cauchy-evolution”, which describe the reaction of the quantum
field theory on local perturbations of the spacetime metric. We will show that the func-
tional derivative of such relative Cauchy-evolutions with respect to the spacetime-metric
is divergence-free. This functional derivative has, in analogy to the case of classical field
theory, the significance of an energy-momentum tensor up to additon of scalar functions,
and in fact we will also show that for the free Klein-Gordon field the functional deriv-
ative of the relative Cauchy-evolution agrees with the commutator action of the energy
momentum tensor in representations of quasifree Hadamard states.

Finally, in Sect. 5, we will show that the construction of locally covariant Wick-poly-
nomials by Hollands and Wald [26] may be understood as a solution of a cohomological
problem.

Some technical details appear in an Appendix.
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2. The Generally Covariant Locality Principle

2.1. Some geometrical preliminaries. In what follows, we will be concerned with four-
dimensional, globally hyperbolic spacetimes, so it is appropriate to summarize some of
their basic properties. For further discussion, see e.g. [25, 51]. We note that the condi-
tion of global hyperbolicity doesn’t appear to be very restrictive on physical grounds.
Its main purpose is to rule out certain causal pathologies.

We denote a spacetime by (M,g) where M is a smooth, four-dimensional manifold
(smooth meaning here C∞, and Hausdorff, paracompact, and connected) and g is a
Lorentzian metric on M (taken to be of signature (+1,−1,−1,−1)). Also, we always
assume that the spacetimes we consider are orientable and time-orientable. The latter
means that there exists a C∞-vectorfield u on M which is everywhere timelike, i.e.
g(u, u) > 0. A smooth curve γ : I → M , I being a connected subset of R, is called
causal if g(γ̇ , γ̇ ) ≥ 0, where γ̇ denotes the tangent vector of γ . Given the global timelike
vector field u on M , one calls a causal curve γ future-directed if g(u, γ̇ ) > 0 all along
γ , and analogously one calls γ past-directed if g(u, γ̇ ) < 0. This induces a globally
consistent notion of time-direction in the spacetime (M,g). For any point x ∈ M , J±(x)
denotes the set of all points in M which can be connected to x by a future(+)/past(−)-
directed causal curve γ : I → M so that x = γ (inf I ). Two subsets O1 and O2 in
M are called causally separated if they cannot be connected by a causal curve, i.e. if
for all x ∈ O1, J±(x) has empty intersection with O2. By O⊥ we denote the causal
complement of O, i.e. the largest open set in M which is causally separated from O.

An orientable and time-orientable spacetime (M,g) is called globally hyperbolic
if for each pair of points x, y ∈ M the set J−(y) ∩ J+(x) is compact whenever it is
non-empty. This property can be shown to be equivalent to the existence of a smooth
foliation of M in Cauchy-surfaces, where a smooth hypersurface of M is called a Cau-
chy-surface if it is intersected exactly once by each inextendible causal curve in (M,g)
(for precise definition of inextendible causal curve, see the indicated references). A par-
ticular feature of globally hyperbolic spacetimes is the fact that the Cauchy-problem
(inital value problem) for linear hyperbolic wave-equations is well-posed and that such
wave-equations possess unique retarded and advanced fundamental solutions on those
spacetimes. It should also be observed that global hyperbolicity makes no reference to
spacetime isometries.

Of some importance later on will be the concept of isometric embedding. Let (M1,g1)

and (M2,g2) be two globally hyperbolic spacetimes. A map ψ : M1 → M2 is called
an isometric embedding (of (M1,g1) into (M2,g2)) if ψ is a diffeomorphism onto its
range ψ(M1) (i.e. the map ψ̄ : M1 → ψ(M1) ⊂ M2 is a diffeomorphism) and if ψ is
an isometry, that is, ψ∗g1 = g2 � ψ(M1).

2.2. Quantum field theories as covariant functors. It is a famous saying attributed to
E. Nelson that quantum field theory is a functor (see [37], Sect. X.7 for a full quotation).
This refers to the map of second quantization, mapping the category of Hilbert-spaces
with unitaries as morphisms to that of C∗-algebras with unit-preserving ∗-homomor-
phisms as morphisms. In a similar light, topological quantum field theories have already
at an early stage been couched in the framework of categories and functors [2]. Here,
we wish to put forward that quantum field theory is indeed a covariant functor, but in
the more fundamental and physical sense of implementing the principles of locality
and general covariance, as discussed in the Introduction. As already pointed out, our
approach provides a natural generalization both of the usual abstract formulation of
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quantum field theory in terms of isotonous families of operator algebras indexed by
bounded open subregions of a fixed background spacetime, and of other approaches
to diffeomorphism-covariant quantum field theory; we will discuss this further below.
We first have to define the categories involved in our formulation of locally covariant
quantum field theory. (See [32] as a general reference on categories and functors.) The
two categories we shall use are the following:

Man: This category consists of a class of objects Obj(Man) formed by all four-
dimensional, globally hyperbolic spacetimes (M,g) that are oriented and time-
oriented. Given any two such objects (M1,g1) and (M2,g2), the morphisms ψ ∈
homMan((M1,g1), (M2,g2)) are taken to be the isometric embeddingsψ : (M1,g1)

→ (M2,g2) of (M1,g1) into (M2,g2) as defined above, but with the additional con-
straints that
(i) if γ : [a, b] → M2 is any causal curve and γ (a), γ (b) ∈ ψ(M1) then the whole

curve must be in the image ψ(M1), i.e., γ (t) ∈ ψ(M1) for all t ∈]a, b[;
(ii) the isometric embedding preserves orientation and time-orientation of the

embedded spacetime.
The composition rule for any ψ ∈ homMan((M1,g1), (M2,g2)) and ψ ′ ∈
homMan((M2,g2), (M3,g3)) is to define its composition ψ ′ ◦ ψ as the compo-
sition of maps. Hence ψ ′ ◦ ψ : (M1,g1)→ (M3,g3) is a well-defined map which
is obviously a diffeomorphism onto its range ψ ′(ψ(M1)) and clearly isometric;
also the properties (i) and and (ii) are obviously fulfilled, and hence ψ ′ ◦ ψ ∈
homMan((M1,g1), (M3,g3)). The associativity of the composition rule follows
from the associativity of the composition of maps. Clearly, each homMan((M,g),
(M,g)) possesses a unit element, given by the identity map idM : x �→ x, x ∈ M .

Alg: This is the category whose class of objects Obj(Alg) is formed by all C∗-algebras
possessing unit elements, and the morphisms are faithful (injective) unit-preserving
∗-homomorphisms. Given α ∈ homAlg(A1,A2) and α′ ∈ homAlg(A2,A3), the
composition α′ ◦ α is again defined as the composition of maps and easily seen to
be an element in homAlg(A1,A3). The unit element in homAlg(A,A) is for any
A ∈ Obj(Alg) given by the identical map idA : A �→ A, A ∈ A.

Remarks. (A) Requirement (i) on the morphisms of Man is introduced in order that the
induced and intrinsic causal structures coincide for the embedded spacetime ψ(M1) ⊂
M2. Aspects of this condition are discussed in [29]. Condition (ii) might, in fact, be
relaxed; the resulting structure, allowing also isometric embeddings which reverse spa-
tial and time orientation, could accomodate a discussion of PCT-theorems. We hope to
report elsewhere on this topic.

(B) Clearly, one may envisage variations on the categories introduced here. Our
present choices might have to be changed or supplemented by other structures, depend-
ing on the situations considered. For example, instead of choosing for Obj(Alg) the class
of C∗-algebras with unit elements, one could consider ∗-algebras, Borchers-algebras,
or von Neumann algebras; we have chosen C∗-algebras for definiteness. Moreover, one
could also allow more general objects than globally hyperbolic spacetimes in Obj(Man),
or endow these objects with additional structures, e.g. spin-structures, as in [12, 47]. For
discussing the locality and covariance structures of observables, however, the present
approach appears sufficient.

Now we are in position to define the concept of locally covariant quantum field theory.
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Definition 2.1. (i) A locally covariant quantum field theory is a covariant functor
A between the two categories Man and Alg, i.e., writing αψ for A (ψ), in typical
diagramatic form:

(M,g)
ψ−−−−→ (M ′,g′)

A



�



�A

A (M,g)
αψ−−−−→ A (M ′,g′)

together with the covariance properties

αψ ′ ◦ αψ = αψ ′◦ψ , αidM = idA (M,g) ,

for all morphisms ψ ∈ homMan((M1,g1), (M2,g2)), all morphisms ψ ′ ∈
homMan((M2,g2), (M3,g3)) and all (M,g) ∈ Obj(Man).

(ii) A locally covariant quantum field theory described by a covariant functor A is
called causal if the following holds:Whenever there are morphismsψj ∈ homMan((Mj ,

gj ), (M,g)), j = 1, 2, so that the sets ψ1(M1) and ψ2(M2) are causally separated in
(M,g), then one has

[

αψ1(A (M1,g1)), αψ2(A (M2,g2))
] = {0} ,

where [A,B] = {AB − BA : A ∈ A, B ∈ B} for subsets A and B of an algebra.

(iii) We say that a locally covariant quantum field theory given by the functor A obeys
the time-slice axiom if

αψ(A (M,g)) = A (M ′,g′)

holds for all ψ ∈ homMan((M,g), (M
′,g′)) such that ψ(M) contains a Cauchy-

surface for (M ′,g′).

Thus, a locally covariant quantum field theory is an assignment ofC∗-algebras to (all)
globally hyperbolic spacetimes so that the algebras are identifiable when the spacetimes
are isometric, in the indicated way. Note that we use the term “local” in the sense of
“geometrically local” in the definition which shouldn’t be confused with the meaning
of locality in the sense of Einstein causality. Causality properties are further specified
in (ii) and (iii) of Def. 2.1. Causality means that the algebras αψ1(A (M1,g1)) and
αψ2(A (M2,g2)) commute elementwise in the larger algebra A (M,g) when the sub-
regions ψ1(M1) and ψ2(M2) of M are causally separated (with respect to g). This
property is expected to hold generally for observable quantities which can be localized
in certain subregions of spacetimes. The time slice axiom (iii) (also called strong Ein-
stein causality, or existence of a causal dynamical law, cf. [21]) says that an algebra of
observables on a globally hyperbolic spacetime is already determined by the algebra of
observables localized in any neighbourhood of a Cauchy-surface.

Before continuing, some remarks on related approaches are in order now. In [16],
Dyson suggested that one should attempt to generalize the usual Haag-Kastler frame-
work of a general description of quantum field theories on Minkowski spacetime, as we
have sketched it in the Introduction, to general spacetime manifolds in such a way that
the covariance group P

↑
+ is replaced by the diffeomorphism group. An approach which

is very close in spirit to Dyson’s suggestion is due to Bannier [3] who constructed, on R
4

as fixed background manifold, a generalized CCR-algebra of the Klein-Gordon field of
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fixed mass on which the diffeomorphism group acts covariantly by C∗-automorphisms.
Bannier’s approach may therefore be regarded as a realization of a functor A with the
above properties but where the domain-category Man is replaced by the subcategory
ManR4 whose objects are the globally hyperbolic spacetimes (M,g) having M = R

4

as spacetime manifolds, and globally hyperbolic sub-spacetimes of those. However, it
appears that the restriction to a fixed background manifold like R

4 is artificial, and at
variance with the principles of general relativity. This is supported by the results in [47]
where an approach similar to the one presented here was taken, and which “localizes”
Dimock’s formulation in [11, 12] where a functorial approach to generally covariant
quantum field theory seems to have been proposed for the first time. Like Bannier’s
work, however, Dimock’s proposal lacks the “locality” aspect of general covariance and
therefore doesn’t completely reveal its strength. It was shown in [47] that the combination
of general covariance and (geometrical) locality leads, together with a few other, natural
requirements, to a spin-statistics theorem for quantum fields on curved spacetimes.

A nice feature of the just given definition of a locally covariant quantum field theory
lies in the fact that there is a natural concept of equivalence of such theories in terms
of equivalence of the corresponding functors. Let A and and A ′ denote two locally
covariant quantum field theories, i.e. functors between Man and Alg as in Def. 2.1.
Then, a natural transformation between A and A ′ is a family {β(M,g)}(M,g)∈Man of ∗-
monomorphisms β(M,g) : A (M,g)→ A ′(M,g) such that the following commutative
diagram is valid whenever ψ is a morphism in homMan((M1,g1), (M2,g2)):

A (M1,g1)
β(M1,g1)−−−−→ A ′(M1,g1)

αψ



�



�α

′
ψ

A (M2,g2)
β(M2,g2)−−−−→ A ′(M2,g2)

Thus, in particular, one has

β(M2,g2) ◦ αψ = α′ψ ◦ β(M1,g1) .

If all the β(M,g) are bijective, one says that the natural transformation
{β(M,g)}(M,g)∈Man is an equivalence (or isomorphism) between A and A ′ and that,
hence, A and A ′ are equivalent. Such an equivalence means that the quantum field the-
ories described by A and A ′ are physically indistinguishable. Conversely, if A and A ′
cannot be related by such an equivalence, they are to be regarded as physically different.

An example for a pair of theories which are not equivalent is given by the Klein-
Gordon fields corresponding to different masses. We will discuss this at the end of
Sect. 2.4.

2.3. The Klein-Gordon field. The simplest and best studied example of a quantum field
theory in curved spacetime is the scalar Klein-Gordon field. As was shown by Dimock
[11], its local C∗-algebras can be constructed easily on each globally hyperbolic space-
time, giving rise to a functor A . To summarize this construction, let (M,g) be an object
in Obj(Man). Global hyperbolicity entails the well-posedness of the Cauchy-problem
for the scalar Klein-Gordon equation on (M,g),

(∇µ∇µ +m2 + ξR)ϕ = 0 (1)



The Generally Covariant Locality Principle 39

(for smooth, real-valued ϕ) where ∇ is the covariant derivative of g, m ≥ 0 and ξ ≥ 0
are constants, and R is the scalar curvature of g. Moreover, it implies that there exist
uniquely determined advanced and retarded fundamental solutions of the Klein-Gordon
equation, Eadv/ret : C∞0 (M,R)→ C∞(M,R). Here, C∞(M,R) denotes the space of
smooth, real-valued test functions on M , and C∞0 (M,R) the subset of those test func-
tions having compact support. The difference E = Eadv − Eret is called the causal
propagator of the Klein-Gordon equation. Let us denote the range E(C∞0 (M,R)) by R
(or, sometimes, by R(M,g) for clarity). It can be shown (cf. [11]) that defining

σ(Ef,Eh) =
∫

M

f (Eh) dµg , f, h ∈ C∞0 (M,R) ,

where dµg is the metric-induced volume form on M , endowes R with a symplectic
form, and thus (R, σ ) is a symplectic space. To this symplectic space one can associate
its Weyl-algebra W(R, σ ), which is generated by a family of unitary elements W(ϕ),
ϕ ∈ R, satisfying the CCR in exponentiated form (“Weyl-relations”),

W(ϕ)W(ϕ̃) = e−iσ (ϕ,ϕ̃)/2W(ϕ + ϕ̃) .
Now, when the constants m and ξ are kept fixed independently of (M,g), the symplec-
tic space (R, σ ) is entirely determined by (M,g), and so is W(R, σ ). Setting therefore
A (M,g) = W(R(M,g), σ(M,g)), one obtains a candidate for a covariant functor A
with the properties of Def. 2.1. What remains to be checked is the covariance property.
Thus, let ψ ∈ homMan((M,g), (M

′,g′)) and let us denote by E,R, σ the propaga-
tor, range-space, and symplectic form corresponding to the Klein-Gordon equation (1)
on (M,g), and by E′,R′, σ ′ their counterparts with respect to (M ′,g′). Moreover, we
denote by Eψ,Rψ, σψ the analogous objects for the spacetime (ψ(M),ψ∗g). It was
shown in [11] that, writingψ∗ϕ = ϕ◦ψ−1, there holdsEψ = ψ∗◦E◦ψ∗−1, Rψ = ψ∗R,
and

σ(Ef,Eh) = σψ(Eψψ∗f,Eψψ∗h) = σψ(ψ∗Ef,ψ∗Eh).
Thus ψ∗ furnishes a symplectomorphism between (R, σ ) and (Rψ, σψ), and hence,
by a standard theorem [5], there is a C∗-algebraic isomorphism α̃ψ : W(R, σ ) →
W(Rψ, σψ) so that

α̃ψ (W(ϕ)) = Wψ(ψ∗(ϕ)) , ϕ ∈ R, (2)

where Wψ( . ) denote the CCR-generators of W(Rψ, σψ).
While these observations are already contained in Dimock’s work [11], we add

another one which is important in the present context: Sinceψ : M → ψ(M) ⊂ M ′ is a
metric isometry, it holds thatψ∗g = g′ � ψ(M).And hence the fact that the advanced and
retarded fundamental solutions of the Klein-Gordon operator are uniquely determined
on a globally hyperbolic spacetime implies that Eψ = χψ(M)E

′ � C∞0 (ψ(M),R),
where χψ(M) is the characteristic function of ψ(M) and that, moreover, Rψ can be
identified with E′(C∞0 (ψ(M),R)) and σψ with σ ′ � Rψ . Therefore, denoting by
ιψ : ψ(M) → M ′ the canonical injection ιψ(x′) = x′, the map T ψ which assigns
to each element Ef , f ∈ C∞0 (M,R), the element E′ιψ∗f in (R′, σ ′) is a symplectic
map from (Rψ, σψ) into (R′, σ ′), and thus one obtains a C∗-algebraic monomorphism
α̃ιψ : W(Rψ, σψ)→ W(R′, σ ′) by

α̃ιψ (W
ψ(φ)) = W ′(T ψφ) , φ ∈ Rψ , (3)
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where W ′( . ) denote the Weyl-generators of W(R′, σ ′). Hence, setting αψ = α̃ιψ ◦
α̃ψ , we have a C∗-algebraic monomorphism αψ : A (M,g) → A (M ′,g′). The co-
variance property αψ ′◦ψ = αψ ′ ◦ αψ for ψ ∈ homMan((M,g), (M

′,g′)) and ψ ′ ∈
homMan((M

′,g′), (M ′′,g′′)) is an easy consequence of the construction of αψ , i.e.
of the relations (2) and (3). It was also shown in [11] that causality and the time-slice
axiom are fulfilled in each W(R, σ ) in the following sense: (i) If f, h ∈ C∞0 (M,R)
with supp f ⊂ (supph)⊥, then W(Ef ) and W(Eh) commute, (ii) if N is an open
neighbourhood of a Cauchy-surface � in M , then there is for each f ∈ C∞0 (M,R)
some h ∈ C∞0 (N,R) with W(Ef ) = W(Eh). We collect these findings in the follow-
ing:

Theorem 2.2. If one defines for each (M,g) ∈ Obj(Man) the C∗-algebra A (M,g)
as the CCR-algebra W(R(M,g), σ(M,g)) of the Klein-Gordon equation (1) (with m, ξ
fixed for all (M,g)), and for each ψ ∈ homMan((M,g), (M

′,g′)) the C∗-algebraic
monomorphism αψ = α̃ιψ ◦ α̃ψ : A (M,g) → A (M ′,g′) according to (2) and (3),
then one obtains a functor A with the properties of Def. 2.1. Moreover, this functor is
causal and fulfills the time-slice axiom.

In this sense, the free Klein-Gordon field theory is a locally covariant quantum field
theory.

2.4. Recovering algebraic quantum field theory. Now we address the issue of regain-
ing the usual setting of algebraic quantum field theory on a fixed globally hyperbolic
spacetime from a locally covariant quantum field theory, i.e. from a covariant functor
A with the properties listed above. It may be helpful for readers not too familiar with
the algebraic approach to quantum field theory on Minkowski spacetime that we briefly
summarize the Haag-Kastler framework [23] so that it becomes apparent in which way
the usual description of algebraic quantum field theory is regained via Prop. 2.3 from our
functorial approach. In the Haag-Kastler framework, the basic structure of the formal
description of a quantum system is given by a mapO �→ A(O) assigning to each open,
bounded region O a C∗-algebra A(O). This “local C∗-algebra” is supposed to contain
all the (bounded) observables of the quantum system at hand that can be measured “at
times and locations” within the spacetime region O; e.g., if the system is described by
a hermitian scalar quantum field ϕ(x), then A(O) may be taken as the operator-alge-
bra generated by all exponentiated field operators eiϕ(f ), where the test-functions f are
supported in O, and the smeared field-operators are ϕ(f ) = ∫

d4x f (x)ϕ(x). Hence,
one has the condition of isotony, demanding that A(O1) ⊂ A(O) whenever O1 ⊂ O.
It is also assumed that the local algebras all contain a common unit element, denoted by
1. Moreover, as the local algebras contain observables, it is usually demanded that
they commute elementwise when their respective localization regions are spacelike
separated.

The locality concept being thus formulated, the notion of special relativistic co-
variance is given the following form: Collecting all local observables in the minimal
C∗-algebra A containing all local algebras A(O), 1 there ought to be for each element
L ∈ P

↑
+ (i.e., the proper, orthochronous Poincaré group) a C∗-algebra automorphism

1 This minimal C∗-algebra is, as a consequence of the isotony condition, well-defined and called the
inductive limit of the family {A(O)}, where O ranges over all bounded open subsets of Minkowski
spacetime.
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αL : A → A so that

αL1 ◦ αL2 = αL1◦L2 , L1, L2 ∈ P
↑
+ ,

where L1 ◦ L2 denotes the composition of elements in P
↑
+.

Let (M,g) be an object in Obj(Man). We denote by K(M,g) the set of all open
subsets in M which are relatively compact and contain with each pair of points x and
y also all g-causal curves in M connecting x and y (cf. condition (ii) in the definition
of Man). Given O ∈ K(M,g), we denote by gO the Lorentzian metric restricted to
O, so that (O,gO) (with the induced orientation and time-orientation) is a member of
Obj(Man). Then the injection map ιM,O : (O,gO) → (M,g), i.e. the identical map
restricted to O, is an element in homMan((O,gO), (M,g)). With this notation, we
obtain the following assertion.

Proposition 2.3. Let A be a functor with the properties stated in Def. 2.1, and define
a map K(M,g) � O �→ A(O) ⊂ A (M,g) by setting

A(O) := αM,O(A (O,gO)) ,

having abbreviated αM,O ≡ αιM,O . Then the following statements hold:

(a) The map fulfills isotony, i.e.

O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2) for all O1,O2 ∈ K(M,g) .

(b) If there exists a group G of isometric diffeomorphisms κ : M → M (so that
κ∗g = g) preserving orientation and time-orientation, then there is a representation
G � κ �→ α̃κ of G by C∗-algebra automorphisms α̃κ : A → A (where A denotes
the minimal C∗-algebra generated by {A(O) : O ∈ K(M,g)}) such that

α̃κ (A(O)) = A(κ(O)) , O ∈ K(M,g) . (4)

(c) If, in addition, the theory given by A is causal, then it follows that

[A(O1),A(O2)] = {0}
for all O1,O2 ∈ K(M,g) with O1 causally separated from O2.

(d) Suppose that the theory A fulfills the time-slice axiom, and let� be a Cauchy-sur-
face in (M,g) and let S ⊂ � be open and connected. Then for each O ∈ K(M,g)
with O ⊃ S it holds that

A(O) ⊃ A(S⊥⊥),
where S⊥⊥ is the double causal complement of S, and A(S⊥⊥) is defined as the
smallest C∗-algebra formed by all A(O1), O1 ⊂ S⊥⊥, O1 ∈ K(M,g).

Proof. (a)The proof of this statement is based on the covariance properties of the functor
A . To demonstrate that isotony holds, letO1 andO2 be in K(M,g) withO1 ⊂ O2. We
denote by ι2,1 : (O1,gO1

)→ (O2,gO2
) the canonical embedding obtained by restrict-

ing the identity map on O2 to O1, hence ι2,1 ∈ homMan((O1,gO1
), (O2,gO2

)). With
the notationαιM,O1

≡ αM,1, etc., covariance of the functor A impliesαM,1 = αM,2◦α2,1
and therefore,

A(O1) = αM,1(A (O1,gO1
)) = αM,2(α2,1(A (O1,gO1

))

⊂ αM,2(A (O2,gO2
)) = A(O2),

since α2,1(A (O1,gO1
)) ⊂ A (O2,gO2

) by the very properties of the functor A .
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(b) To prove the second part of the statement, let κ : (M,g)→ (M,g) be a diffeo-
morphism preserving the metric as well as time-orientation and orientation. The functor
assigns to it an automorphismακ : A (M,g)→ A (M,g). Denoting by κ̃ the mapO →
κ(O), x �→ κ(x), there is an associated morphismακ̃ : A (O,gO)→ A (κ(O),gκ(O)).
Hence we obtain the following sequence of equations:

ακ(A(O)) = ακ ◦ αM,O(A (O,gO)) = ακ◦ιM,O (A (O,gO))

= αιM,κ(O)◦κ̃ (A (O,gO)) = αM,κ(O) ◦ ακ̃(A (O,gO))

= αM,κ(O)(A (κ(O),gκ(O))) = A(κ(O)) .

Since A ⊂ A (M,g), it follows that defining α̃κ as the restriction of ακ to A yields an
automorphism with the required properties. The group representation property is simply
a consequence of the covariance properties of the functor yielding ακ1 ◦ ακ2 = ακ1◦κ2

for any pair of members κ1, κ2 ∈ G together with (4) which allows us to conclude that
α̃κ1 ◦ α̃κ2 = α̃κ1◦κ2 .
(c) If O1 and O2 are causally separated members in K(M,g), then one can find

a Cauchy-surface � in (M,g) and a pair of disjoint subsets S1 and S2 of �, both of
which are connected and relatively compact, so that Oj ⊂ S⊥j

⊥, j = 1, 2. Now S⊥j
⊥

are causally separated members of K(M,g), and equipped with the appropriate restric-
tions of g as metrics, they are globally hyperbolic spacetimes in their own right, and
naturally embedded into (M,g). According to the causal assumption on A , it holds that
A(S⊥j

⊥) = αM,S⊥j ⊥(A (S⊥j
⊥),gS⊥j ⊥) are pairwise commuting subalgebras of A (M,g),

and due to isotony, A(Oj ) ⊂ A(S⊥j
⊥), so that [A(O1),A(O2)] = {0}.

(d) Consider S⊥⊥, equipped with the appropriate restriction of g, as a globally hy-
perbolic spacetime in its own right. Then S is a Cauchy-surface for that spacetime, and
O ∩ S⊥⊥ is an open neighbourhood of the Cauchy-surface S. Hence there is an open
neighbourhood N of S contained in O ∩ S⊥⊥ so that N , endowed with the restricted
metric, is again a globally hyperbolic spacetime. By the time-slice axiom, it follows that
αS⊥⊥,N (A (N)) = A (S⊥⊥), where we have suppressed the metrics to ease notation.
According to the functorial properties of A it follows that

A(O) ⊃ A(N) = A(S⊥⊥) .

This completes the proof. ��

Thus, one can clearly see that, in the light of Prop. 2.3, the Haag-Kastler framework
is a special consequence of our functorial approach.

As announced towards the end of Sect. 2.2, we now indicate that the theories of the
Klein-Gordon field corresponding to different masses, m1 �= m2, are inequivalent. To
this end it suffices, in view of Prop. 2.3, to argue as follows. LetO �→ Aj (O), j = 1, 2,
denote theC∗-algebraic nets on Minkowski spacetime derived from the locally covariant
Klein-Gordon field theories A1 and A2 for the masses m1 and m2, and let (α̃(j)L )

L∈P
↑
+

be the associated covariant automorphic actions of the Poincaré group on Aj . If an
equivalence between A1 and A2 existed, then a simple variation of the proof of Prop.
2.3 shows that there must be an isomorphism β : A1 → A2 such that

β(A1(O)) = A2(O) and β ◦ α̃(1)L = α̃(2)L ◦ β
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hold for all O ∈ K(M0,g0) (where (M0,g0) denotes Minkowski spacetime) and all
L ∈ P

↑
+. Now, on each Aj there is a unique state ωj that is invariant under the respec-

tive automorphic action of the Poincaré group and a ground state with respect to the
corresponding action of timelike translations. Hence, one would have to conclude that
ω2 ◦ β = ω1 which, however, cannot hold, as it would imply that the spectra of the
generators of the time-translations in the vacuum representations of the Klein-Gordon
field for different masses coincide.

2.5. Quantum fields as natural transformations. We have just seen how a quantum field
theory is defined in terms of a covariant functor. Thereby, an algebra is mapped via the
monomorphism αψ into another algebra, but a priori there are no distinguished elements
of the algebras which are mapped onto each other by that transformation.

As discussed in the Introduction, the energy-momentum tensor should possess a
corresponding covariance property, and the same holds for other quantum fields. The
definition of locally covariant fields given below may be considered as a generalization
of the Gårding-Wightman approach to fields as operator-valued distributions. As there,
the C*-algebraic formulation of quantum field theory turns out to be too rigid, in gen-
eral, and we therefore replace the category Alg of C*-algebras by the category TAlg of
topological *-algebras.

The definition may be given as follows: Consider a family � ≡ {�(M,g)}, indexed
by all spacetimes (M,g) ∈ Obj(Man), of quantum fields defined as “generalized al-
gebra-valued distributions”. That means there is a family {A(M,g)} of topological
*-algebras indexed by all spacetimes in Obj(Man), and for each spacetime (M,g),
�(M,g) : C∞0 (M) → A(M,g) is a continuous map (not necessarily linear, this is
why we refer to it as a “generalized” distribution). Consider in addition any morphism
ψ ∈ homMan((M1,g1), (M2,g2)). Then we demand that there exists a continuous
monomorphism αψ : A(M1,g1)→ A(M2,g2) so that,

αψ(�(M1,g1)(f )) = �(M2,g2)(ψ∗(f )),

where f ∈ C∞0 (M1) is any test function and ψ∗(f ) = f ◦ ψ−1 as before. (The push-
forwardψ∗ is well-defined here sinceψ−1 : ψ(M)→ M exists by injectivity ofψ .) The
family {�(M,g)} with these covariance conditions is called a locally covariant quantum
field, and indeed, this definition was already used by Hollands and Wald [26, 27] in their
construction of Wick polynomials and time ordered products. The concept of locally
covariant fields has a beautiful functorial translation, as we shall next outline.

Let Test denote the category of test function spaces on manifolds, i.e. the objects
are spaces C∞0 (M) of smooth, compactly supported test-functions on M and the mor-
phisms are the push-forwards ψ∗ of (injective) embeddings ψ : M1 → M2 as described
above.

Now let a locally covariant quantum field theory A be defined as a functor in the
same manner as in Def. 2.1, but with the category TAlg in place of the category Alg, and
again following the convention to denote A (ψ) by αψ whenever ψ is any morphism
in Man. Moreover, let D be the covariant functor between Man and Test assigning
to each (M,g) ∈ Obj(Man) the test-function space D(M,g) = C∞0 (M), and to each
morphism ψ of Man its push-forward: D(ψ) = ψ∗. We regard the categories Test and
TAlg as subcategories of the category of all topological spaces Top, and hence we are
led to adopt the following:
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Definition 2.4. A locally covariant quantum field � is a natural transformation
between the functors D and A , i.e. for any object (M,g) in Man there exists a mor-
phism �(M,g) : D(M,g)→ A (M,g) in Top such that for each given morphism
ψ ∈ homMan((M1,g1), (M2,g2)) the following diagram

D(M1,g1)
�(M1,g1)−−−−−→ A (M1,g1)

ψ∗


�



�αψ

D(M2,g2) −−−−−→
�(M2,g2)

A (M2,g2)

commutes.

The commutativity of the diagram means, explicitly, that

αψ ◦�(M1,g1) = �(M2,g2) ◦ ψ∗,
i.e., the requirement of covariance for fields.

Remarks. (A) This definition may of course be extended; instead of the test-function
spaces C∞0 (M) one may take smooth compactly supported sections of vector bundles,
and monomorphisms of such more general test-sections spaces which are suitable pull-
backs of vector-bundle monomorphisms. Also, one might include conditions on the
wave-front set of the field-operators.

(B) The notion of causality may also be introduced in the obvious manner: One calls a
locally covariant quantum field causal if for all f, h ∈ D(M,g)with causally separated
supports it holds that �(M,g)(f ) and �(M,g)(h) commute.

(C) One reason for allowing non-linear fields in the definitions of quantum fields
as natural transformations is that it can be applied to more general objects. One would
be the definition of a locally covariant S-matrix, patterned after the definition of the
“local” S-matrix of Epstein and Glaser, see e.g. [6]. At the perturbative level (in the
sense of formal power series) this amounts to showing that time-ordered products may
be defined in such a way that they become locally covariant fields, as was done in [27].
At the non-perturbative level, it might be possible that the constraint of local covariance
together with a dynamical generator property (in the spirit of Sect. 4) allows to fix the
phase of the S-matrix. We hope to return elsewhere to this issue.

2.6. Free scalar Klein-Gordon field as a natural transformation. The present subsec-
tion serves the purpose of sketching two simple examples for locally covariant quantum
fields. The first example is based on the Borchers-Uhlmann algebra which can be asso-
ciated with each manifoldM . It assigns to each differentiable manifoldM a topological
*-algebra B(M) that is constructed as follows: Elements in B(M) are sequences (fn)
(n ∈ N0), where f0 ∈ C and fn ∈ C∞0 (Mn) for n > 0, and only finitely many entries
are non-zero. Addition and scalar multiplication are defined as usual for sequences with
values in vector spaces, and the product (fn)(hn) in B(M) is defined as the sequence
(jn), where

jn(x1, . . . , xn) =
∑

i+j=n
fi(x1, . . . , xi)hj (xi+1, . . . , xn) , (x1, . . . , xn) ∈ Mn .
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The *-operation is defined via (fn)∗ = (
=
f n), where

=
f n(x1, . . . , xn) = fn(xn, . . . , x1),

the latter overlining meaning complex conjugation. The unit element is given by 1 =
(1, 0, 0, . . . ). The algebra can be equipped with a fairly natural locally convex topology
with respect to which it is complete. See [4, 43] (and also [18, 38] in the context of
curved spacetime manifolds) for further discussion of the Borchers-Uhlmann algebra.

Given a morphismψ ∈ homMan((M1,g1), (M2,g2)), one can lift it to an algebraic
morphism αψ : B(M1)→ B(M2) by setting

αψ((fn)) = (ψ(n)∗ fn),

where ψ(n)∗ denotes the n-fold push-forward, given by (ψ(n)∗ fn)(y1, . . . , yn) = fn
(ψ−1(y1), . . . , ψ

−1(yn)). We thus obtain a covariant functor A between Man and
TAlg by setting A (M,g) = B(M) and A (ψ) = αψ as just defined. A locally co-
variant quantum field � in the sense of Def. 2.4 may then be obtained by defining for
(M,g) ∈ Obj(Man) and f ∈ D(M,g) = C∞0 (M),

�(M,g)(f ) = (fn),
where (fn) ∈ A (M,g) = B(M) is the sequence with f1 = f and fn = 0 for all
n �= 1. It is straightforward to check that this indeed satisfies all conditions for a natural
transformation between the functors D and A .

The Borchers-Uhlmann algebra, however, carries no dynamical information, which
would have to be incorporated by passing to representations, or factorizing by ideals.
In this spirit, we introduce as our second example the Klein-Gordon field as a locally
covariant field. For (M,g) ∈ Obj(Man), let J (M,g) be the (closed) two-sided ideal in
B(M) that is generated by all the terms

(fn)(hn)− (hn)(fn)− σ(Ef,Eh)1
and

((∇µ∇µ + ξR +m2)(fn)),

where the (fn) and (hn) in B(M) are such that f1 = f , h1 = h, and all other entries in
the sequences vanish; E = E(M,g) and σ = σ(M,g) are the propagator and symplectic
form corresponding to the Klein-Gordon equation

(∇µ∇µ + ξR +m2)ϕ = 0 (5)

on (M,g) introduced in Subsect. 2.3. (Again it is assumed that the constants ξ and m
are the same for all (M,g)).

Then we introduce a new functor A between Man and TAlg, as follows: We define
A (M,g) = B(M)/J (M,g) and, denoting by [ . ] : B(M) → B(M)/J (M,g) the
quotient map, we set for ψ ∈ homMan((M1,g1), (M2,g2)),

A (ψ)([(fn)]) ≡ αψ([(fn)]) = [(ψ(n)∗ fn)],

where ψ(n)∗ is the n-fold push-forward of ψ defined above. The required properties of
this definition of αψ to map J (M1,g1) into J (M2,g2), and αψ◦ψ ′ = αψ ◦ αψ ′ , can
be obtained by an argument similar to that in Subsect. 2.3 showing that the αψ defined
there have the desired covariance properties.
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With respect to this new functor A , we may now define the generally covariant
Klein-Gordon field � as a natural transformation according to Def. 2.4 through setting
for (M,g) ∈ Obj(M,g) and f ∈ D(M,g) = C∞0 (M),

�(M,g)(f ) = [(fn)],

where, as above, (fn) is the element in B(M) with f1 = f and fn = 0 for all n �= 1.
Again, the properties of a natural transformation are easily checked for this definition.

Moreover, locally covariant quantum fields � modelling the Klein-Gordon field (5)
may be obtained from the functor A of Subsect. 2.3 describing the locally covariant
quantum field theory of the Klein-Gordon field at C∗-algebraic level. We give only a
rough sketch of the idea. Let A be the functor associated with the Klein-Gordon field
in Subsect. 2.3. Let (M,g) ∈ Obj(Man), and let π be a Hilbert-space representation
of the C∗-algebra A (M,g) on a representation Hilbert-space H. We assume that there
exists a dense subspace V of H so that, for each f ∈ C∞0 (M,R), the field operator

�(M,g)(f ) = 1

i

d

ds

∣
∣
∣
∣
s=0

π(W(sEf ))

exists as an (essentially) self-adjoint operator on V, whereE denotes the propagator and
W( . ) the Weyl-algebra generators associated with the Klein-Gordon field on (M,g).
(The field operators can be extended to all complex-valued testfunctions by requiring
complex linearity.) The notation used here already suggests how one may go about in
order to try to obtain a locally covariant quantum field in this way. Supposing a quantum
field �(M,g) can be defined in this manner for all (M,g) ∈ Obj(Man) (from repre-
sentations π for each spacetime), and that, for each ψ ∈ homMan((M,g), (M

′,g′)),
the assignment α̃ψ (�(M,g)(f )) = �(M ′,g′)(ψ∗f ) extends to a *-algebraic morphism
α̃ψ : Ã (M,g)→ Ã (M ′,g′), where Ã (M,g) denotes the *-algebra formed by all the
�(M,g)(f ), f ∈ C∞0 (M), one obtains in this way a locally covariant quantum field �
as a natural transformation.

3. States, Representations, and the Principle of Local Definiteness

3.1. Functorial description of a state space. The description of a physical system in
terms of operator algebras requires also the concept of states so that expectation values
of observables can be calculated. First, suppose that one is given a C∗-algebra A with
unit element 1 modelling the algebra of observables of some physical system. A state is
a linear functional ω : A → C having the property of being positive, i.e. ω(A∗A) ≥ 0
∀A ∈ A, and normalized, i.e. ω(1) = 1. Thus, given any hermitian element A ∈ A, the
number ω(A) is interpreted as an expectation value of the observable A in the state ω.

There is an intimate relation between states on A and Hilbert-space representations
of A. If π is a linear ∗-representation of A by bounded linear operators on some Hil-
bert-space H, then each positive density matrix ρ with unit trace on H induces a state
ω(A) = tr(ρ ·π(A)), A ∈ A, on A. There is also a converse of that: For each state ω on
A there exists a triple (Hω, πω,�ω), consisting of a Hilbert-space Hω, a linear ∗-repre-
sentation πω of A by bounded linear operators on Hω, and a unit vector�ω ∈ Hω such
thatω(A) = 〈�ω, πω(A)�ω〉 for allA ∈ A. This triple is called the GNS-representation
of ω (after Gelfand, Naimark and Segal); for its construction, see e.g. [5].

Now suppose that our set of observables arises in terms of a functor A describ-
ing a locally covariant quantum field theory. The question arises what the concept of a
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state might be in this case. The first, quite natural idea is to say that a state is a family
{ω(M,g) : (M,g) ∈ Obj(Man)} indexed by the members in the object-class Man, where
each ω(M,g) is a state on the C∗-algebra A (M,g). Usually, however, one is interested
in states with particular properties, e.g., one would like to consider states ω(M,g) ful-
filling an appropriate variant of the “microlocal spectrum condition” [7] which can be
seen as a replacement for the relativistic spectrum condition for quantum field theories
on curved spacetime and which, for free fields, is equivalent to the Hadamard condi-
tion (cf. Sect. 2.3, and [36, 39]). One might wonder if, above that, there are families of
states {ω(M,g) : (M,g) ∈ Obj(Man)} that are distinguished by a property which in our
framework would correspond to “local diffeomorphism invariance”, namely,

ω(M ′,g′) ◦ αψ = ω(M,g) on A (M, g)

for all ψ ∈ homMan((M,g), (M
′,g′)). However, it has been shown in [26] that this

invariance property cannot be realized for states of the free scalar field fulfilling the mi-
crolocal spectrum condition. Let us briefly sketch an argument showing that the above
property will, in general, not be physically realistic. Let us consider two spacetimes
(M1,g1) and (M2,g2), and assume that (M1,g1) is just Minkowski-spacetime. More-
over, it will be assumed that (M2,g2) consists of three regions which are themselves
globally hyperbolic sub-spacetimes of (M2,g2): An “intermediate” region L2 lying in
the future of a region N−2 and in the past of a region N+2 . All these regions are assumed
to contain Cauchy-surfaces, and it is also assumed that the regionsN±2 are isometrically
diffeomorphic to globally hyperbolic subregionsN±1 of Minkowski spacetime (M1,g1)

which likewise contain Cauchy-surfaces. By ι± : N±1 → N±2 we denote the correspond-
ing isometric diffeomorphisms. We may, for the sake of concreteness, consider a free
scalar field (cf. next section), and define the state ω1 on A (M1,g1) to be its vacuum
state (which fulfills the microlocal spectrum condition). Then the state ω−2 = ω1 ◦ α−1

ι−
induces a state on A (N−2 ,g2,N−2

) and thereby, since the free field obeys the time-slice
axiom, it induces a state ω2 on A (M2,g2) (which again fulfills the microlocal spectrum
condition). Now the state ω2 restricts to a state ω+2 on A (N+2 ,g2,N+2

). However, if there
is non-trivial curvature in the intermediate region L2, then the state ω2, which was a
vacuum state on the “initial” region N−2 , will no longer be a vacuum state on the “final”
region N+2 [50]. The regions N−2 and N+2 possess isometric subregions; it is no loss of
generality to suppose that there is an isometric diffeomorphism ψ : N−2 → N+2 . Then
invariance in the above sense of the family of states ω1, ω2, ω

±
2 demands that

ω+2 ◦ αψ = ω−2 ,
but this is not the case (ω−2 is (the restriction of) a vacuum state, ω+2 is (the restriction
of) a non-vacuum state.) The counterexample is based on a form of “relative Cauchy-
evolution”, which is worth being studied in greater generality, and this will be the topic
of Sect. 4.

In view of this negative result one finds oneself confronted with the question if there
is a more general concept of “invariance” that can be attributed to families of states
{ω(M,g) : (M,g) ∈ Obj(Man)} for a locally covariant quantum field theory given by a
functor A . We will argue that there is a positive answer to that question: The local folia
determined by states satisfying the microlocal spectrum condition are good candidates
for minimal classes of states which are locally diffeomorphism covariant. To explain
this, let us fix the relevant concepts some of which are, in fact, due to Haag [23].
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Folium of a representation. Let A be a C∗-algebra and π : A → B(H) a ∗-represen-
tation of A by bounded linear operators on a Hilbert space H. The folium of π , denoted
by F (π), is the set of all states ω′ on A which can be written as

ω′(A) = tr(ρ · π(A)) , A ∈ A (M,g) .

In other words, the folium of a representation consists of all density matrix states in that
representation.

Local quasi-equivalence and local normality. Let A be a locally covariant quantum
field theory and let, for (M,g) fixed, ω and ω̃ be two states on A . We will say that
these states (or their GNS-representations, denoted by π and π̃ , respectively) are locally
quasi-equivalent if for all O ∈ K(M,g) the relation

F (π ◦ αM,O) = F (π̃ ◦ αM,O) (6)

is valid, where αM,O = αιM,O and ιM,O : (O,gO)→ (M,g) is the natural embedding
(cf. Prop. 2.3).

Moreover, we say that ω is locally normal to ω̃ (or to the corresponding GNS-repre-
sentation π̃ ) if

ω ◦ αM,O ∈ F (π̃ ◦ αM,O) (7)

holds for all O ∈ K(M,g).

Intermediate factoriality. Let ω be a state on A (M,g), then we define for each O ∈
K(M,g) the von Neumann algebra Mω(O) = πω(αM,O(A (M,g)))′′, the local von
Neumann algebra of the region O with respect to the state ω. We say that the state ω
fulfills the condition of intermediate factoriality if for each O ∈ K(M,g) there exist
O1 ∈ K(M,g) and a factorial von Neumann algebra N acting on the GNS-Hilbert-space
Hω of ω so that

Mω(O) ⊂ N ⊂ Mω(O1) .

(We recall that a factorial von Neumann algebra N is a von Neumann algebra so that
N ∩N′ contains only multiples of the unit operator.)

It is known that quasifree states of the free scalar field on globally hyperbolic space-
times which fulfill the microlocal spectrum condition are locally quasi-equivalent (cf.
Subsect. 3.2). Thus, local quasi-equivalence may be expected for states satisfying the
microlocal spectrum condition. More generally, local normality can be interpreted as
ruling out the possibility of local superselection rules. Also intermediate factoriality is
known to hold for states of the free scalar field fulfilling the microlocal spectrum condi-
tion on globally hyperbolic spacetimes (cf. again Sect. 3). The condition of intermediate
factoriality serves the purpose of eliminating the possible difference between the foli-
um of a representation and the folium of any of its (non-trivial) subrepresentations (see
Appendix b)). It can also be motivated as the consequence of a stricter formulation,
known as “split property”, which is expected to hold for all (also interacting) physically
relevant quantum field theories on general grounds (cf. [41, 21, 9]) and is in fact known
to hold for states of the free field fulfilling the microlocal spectrum condition in flat and
curved spacetimes [8, 45], and for interacting theories in low dimensions [40]. We also
note that the property of a state to fulfill the microlocal spectrum condition is a locally
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covariant property (owing to the covariant behaviour of wavefront sets of distributions
under diffeomorphisms [28]) and thus, for a locally covariant quantum field theory it is
natural to assume that, ifω(M ′,g′) fulfills (any suitable variant of) the microlocal spectrum
condition, then so does ω(M ′,g′) ◦ αψ for any ψ ∈ homMan((M,g), (M

′,g′)). In the
case where also the folia of states (i.e., the folia of their GNS-representations) satisfying
the microlocal spectrum condition coincide locally, one thus obtains the invariance of
local folia under local diffeomorphisms for families of states satisfying the microlocal
spectrum condition, more precisely, at the level of the GNS-representations of ω(M,g)
and ω(M ′,g′),

F (π(M ′,g′) ◦ αψ ◦ αM,O) = F (π(M,g) ◦ αM,O)
holds for all ψ ∈ homMan((M,g), (M

′,g′)) and all O ∈ K(M,g). All these proper-
ties are known to hold for quasifree states of the free scalar field fulfilling the microlocal
spectrum condition on global hyperbolic spacetimes, see Subsect. 3.2 for discussion.

Thus one can see that local diffeomorphism invariance really occurs at the level of
local folia of states for A . In this light, it appears natural to give a functorial descrip-
tion of the space of states that takes this form of local diffeomorphism invariance into
account. To this end, it seems convenient to first introduce a new category, the category
of state spaces.

Sts: An object S ∈ Obj(Sts) is a state space of a C∗-algebra A. That is, S is a subset
of the set of all states on A that is closed under taking finite convex combinations
and operations ω( . ) �→ ωA( . ) = ω(A∗ . A)/ω(A∗A), A ∈ A. Morphisms between
members S′ and S of Obj(Sts) are maps γ ∗ : S′ → S that arise as the dual map of
a C∗-algebraic monomorphism γ : A → A′ via

γ ∗ω′(A) = ω′(γ (A)) , ω′ ∈ S′, A ∈ A .

The category Sts is therefore “dual” to the category Alg. The composition rules for
morphisms should thus be obvious.

Now we can define a state space for a locally covariant quantum field theory in a func-
torial manner.

Definition 3.1. Let A be a locally covariant quantum field theory.

(i) A state space for A is a contravariant functor S between Man and Sts:

(M,g)
ψ−−−−→ (M ′,g′)

S



�



�S

S(M,g)
α∗ψ←−−−− S(M ′,g′)

where S(M,g) is a set of states on A (M,g) and α∗ψ is the dual map of αψ ; the contra-
variance property is

α∗
ψ̃◦ψ = α

∗
ψ ◦ α∗ψ̃

together with the requirement that unit morphisms are mapped to unit morphisms.

(ii) We say that a state space S is locally quasi-equivalent if Eq. (6) holds for any
pair of states ω, ω̃ ∈ S(M,g) (with GNS-representations π, π̃ ) whenever (M,g) ∈
Obj(Man) and O ∈ K(M,g).
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(iii) A state space S is called locally normal if there exists a locally quasi-equivalent
state space S̃ so that for each ω ∈ S(M,g) there is some ω̃ ∈ S̃(M,g) (with GNS-
representation π̃) so that (7) holds for all O ∈ K(M,g).

(iv) We say that a state space S is intermediate factorial if each state ω ∈ S(M,g)
fulfills the condition of intermediate factoriality.

We list a few direct consequences of the previous definitions.

Theorem 3.2. (a) Let S be a state space which is intermediate factorial. Then for
all spacetimes (M,g), (M ′,g′) ∈ Obj(Man) and all pairs of states ω ∈ S(M,g),
ω′ ∈ S(M ′,g′) with GNS-representations π , π ′ there holds

F (π ′ ◦ αψ ◦ αM,O) = F (π ◦ αM,O) , O ∈ K(M,g) , (8)

if and only if the state space is locally quasi-equivalent.

(b) If the state space S is locally normal, then there exists a family of states {ω(M,g) :
(M,g) ∈ Obj(Man)} on A with the property that each ω ∈ S(M,g) is locally normal
to ω(M,g).

(c) If S̃ is a locally quasi-equivalent and intermediate factorial state space, then one
obtains a convex, locally normal state space S by defining S(M,g) as the set of all
states which are locally normal to any state on S̃(M,g).

Proof. In our proof, we will make use of the following statements:

(α) Let A,B and C be C∗-algebras with C∗-algebraic morphisms

A
β−→ B

γ−→ C ,

and let ω be a state on C. Then there holds

F (πω ◦ γ ◦ β) ⊃ F (πω◦γ ◦ β) ⊃ F (πω◦γ ◦β) ,

where πν denotes the GNS-representation of the state ν; we will use this notation
also below.
(β) Let N be a factorial von Neumann algebra on some Hilbert-space H, and let
HN be some N-invariant closed, non-zero subspace. Then for every density matrix
ρ = ∑

i λi |φi〉〈φi |, where the φi are unit vectors in H, there exists a density matrix
ρN = ∑

j µj |χj 〉〈χj |, where the χj are unit vectors in HN , so that

tr(ρ ·N) = tr(ρN ·N) (9)

holds for all N ∈ N.

These statements will be proved in the appendix.

(a) A first immediate observation is that α∗ψS(M ′,g′) ⊂ S(M,g) together with the
condition of local quasi-equivalence imply

F (πω′◦αψ ◦ αM,O) = F (π ◦ αM,O) , O ∈ K(M,g) . (10)

Now fixO ∈ K(M,g). According to the assumed condition of intermediate factoriality,
there are a region O1 ∈ K(M,g) and a factorial von Neumann algebra N so that

Mω′(ψ(O)) ⊂ N ⊂ Mω′(ψ(O1)) .
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Consequently, if we choose an arbitrary state ω1 ∈ F (πω′ ◦ αψ ◦ αM,O), then there
exists, according to statement (β) above, a density matrix ρN = ∑

j µj |χj 〉〈χj | with

χj ∈ HN = N�′ (where �′ is the GNS-vector of ω′) with the property

ω1(A) = tr(ρN · πω′ ◦ αψ ◦ αM,O(A)) , A ∈ αM,O(A (O,gO)) .

Therefore, the state is in particular given by a density matrix ρN in the GNS-represen-
tation of ω′ ◦ αM ′,ψ(O1), so that ω1 extends to a state

ω1 ∈ F (πω′◦αM′,ψ(O1)
) .

Owing to covariance, this in turn shows that

ω1 ∈ F (πω′◦αψ◦αM,O1
) .

Restricting ω1 again to ω1 = ω1 ◦ αM,O on A (O,gO) yields

ω1 ∈ F (πω′◦αψ ◦ αM,O) .
In view of statement (α) above and because of (10), we have thus shown that (8) holds
for all O ∈ K(M,g) if S is locally quasi-equivalent. The reverse implication, saying
that (8) implies that S is locally quasi-equivalent, is evident.

(b) One may choose an arbitrary family of states ω(M,g) ∈ S̃(M,g); since each such
choice of states is locally quasi-equivalent to any other, by definition each state in
S(M,g) will be locally normal to ω(M,g).

(c) If S is a state space, then it is clearly locally normal owing to the way it is defined.
So it suffices to prove that S is a state space, and convex.

To show that S is a state space, it is enough to demontrate that

α∗ψ(S(M
′,g′)) ⊂ S(M,g) ,

since the contravariance property of the α∗ψ ’s is inherited from the covariance property
of the αψ ’s. Now if ω′ ∈ S(M ′,g′), then this means that

ω′ ◦ αM ′,O ′ ∈ F (πω̂ ◦ αM ′,O ′)

holds for allO ′ ∈ K(M ′,g′), where ω̂ is some element in S̃(M ′,g′). Using covariance
one deduces from this relation

(α∗ψω
′) ◦ αM,O = ω′ ◦ αψ ◦ αM,O ∈ F (πω̂ ◦ αψ ◦ αM,O) .

Then part (a) of the proposition entails

(α∗ψω
′) ◦ αM,O ∈ F (πω̃ ◦ αM,O)

for all O ∈ K(M,g) with some ω̃ ∈ S̃(M,g), showing that α∗ψω
′ ∈ S(M,g).

Finally, we show that S is convex. Letω′ = λω1+(1−λ)ω2 be a convex combination
of two states ω1 and ω2 in S(M,g). Then ωj ◦ αM,O ∈ F (πω̃ ◦ αM,O), j = 1, 2, for
some state ω̃ ∈ S̃(M,g), and going back to the definition of the folium, this shows in
fact that ω′ ◦ αM,O ∈ F (πω̃ ◦ αM,O). Thus ω′ ∈ S(M,g), showing that S(M,g) is
convex. ��
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Finally, we shall demonstrate that a locally normal and intermediate factorial state
space induces a generally covariant realization of the principle of local definiteness pro-
posed by Haag, Narnhofer and Stein [22]. This principle was introduced in the context
of a net of observable algebras {A(O)}O∈K(M,g) over a fixed, globally hyperbolic back-
ground spacetime (M,g). The principle of local definiteness demands that there exists
a Hilbert-space representation π of the C∗-algebra A generated by {A(O)}O∈K(M,g)

so that the set of states, S, of the theory can be characterized as consisting of all states
ω on A that can be extended to normal states on the local von Neumann algebras
M(O) = π(A(O))′′, O ∈ K(M,g). Furthermore, it was required in [22] that the local
von Neumann algebras M(O) are factors, at least for a suitable collection of regionsO.
Here we take the point of view that one should replace this condition by the (weaker)
condition of intermediate factoriality with respect to the family of local von Neumann
algebras {M(O)}O∈K(M,g) since this avoids having to specify precise geometric condi-
tions on the regions O for which M(O) should be a factor.

Adopting this point of view, we may observe the following. Let A be a locally co-
variant quantum field theory with a locally normal and intermediate factorial state space
S, and for (M,g) ∈ Obj(Man), let {A(O)}O∈K(M,g) be the net of C∗-algebras on
(M,g) induced by A according to Prop. 2.3. Let ω̃ be any state in S̃(M,g), where S̃
is a locally quasi-equivalent state space to which S is locally normal (cf. Def. 2.3(iii)),
and denote by π̃ the corresponding GNS-representation. This representation induces a
representation π of A via defining the representations π � A(O) as π̃ ◦ α−1

M,O , and
hence it induces the corresponding net of von Neumann algebras {M(O)}O∈K(M,g). It
is easy to see that each state ω ∈ S(M,g) extends to a normal state on M(O) owing
to local normality of S; additionally {M(O)}O∈K(M,g) satisfies the condition of inter-
mediate factoriality because S is intermediate factorial. We formulate the result of this
discussion subsequently as

Proposition 3.3. If S is locally normal and intermediate factorial, then the set of states
S(M,g) for {A(O)}O∈K(M,g) fulfills the principle of local definiteness, for each (M,g)
∈ Obj(M,g).

3.2. State space of the Klein-Gordon field distinguished by microlocal spectrum condi-
tion. For the locally covariant quantum field theory of the Klein-Gordon field, we will
show in the present subsection that the microlocal spectrum condition selects a state
space that is locally quasi-equivalent and intermediate factorial.

We have to provide some explanations first. Let (M,g) ∈ Obj(Man) and let E,
W(R, σ ) be defined with respect to the Klein-Gordon equation (1) on (M,g). A state
ω on W(R, σ ) is called quasifree if its two-point function

w
(ω)
2 (f, h) = ∂t∂τ |t=τ=0 ω(W(tEf )W(τEh))

exists for all f, h ∈ C∞0 (M,R), and if ω is determined by w(ω)2 according to

ω(W(Ef )) = e−w
(ω)
2 (f,f ) .

A quasifree state ω is a Hadamard state if its two-point function is of Hadamard form.
This property is a constraint on the short-distance behaviour of the two-point function.
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Qualitatively, it means that w(ω)2 is a distribution on C∞0 (M,R) × C∞0 (M,R) of the
form

w
(ω)
2 (f, h) = lim

ε→0

∫

(Gε(x, y)+Hω(x, y))f (x)h(y) dµg(x) dµg(y), (11)

whereHω is a smooth integral kernel depending on the stateω, while the singular part of
w
(ω)
2 is given as the limit of a family of integral kernelsGε which are determined by the

metric g and the Klein-Gordon equation via the so-called Hadamard recursion relations.
The leading singularity is of the type 1/(squared geodesic distance from x to y). We
refer to [31] for details. The Hadamard property can be equivalently expressed in terms
of a condition on the wavefront set WF(w(ω)2 ) of the two-point function [36] (see also
[39]): ω is a Hadamard state exactly if the pairs of covectors (x, η) and (x′, η′) which
are in WF(w(ω)2 ) are such that their base-points x and x′ lie on a lightlike geodesic, and
the co-tangent vectors η and −η′ are co-tangent and co-parallel to that geodesic, with η
future-pointing.

This characterization of the Hadamard condition in terms of a constraint on the wave-
front set of the two-point function of a state is also referred to as the “microlocal spectrum
condition” because it mimicks the usual, flat space spectrum condition in the sense of
microlocal analysis; its advantage is that it may be formulated for general quantum field
theories, in contrast to the Hadamard condition which requires that the 2-point func-
tion satisfies a hyperbolic wave-equation [7, 46]. We refer to the indicated references
for further discussion. In the context of the present subsection, we will use “Hadamard
condition” and “microlocal spectrum condition” synonymously.

Now let A be the locally covariant quantum field theory associated with the Klein-
Gordon field as in Subsect. 2.3. It is important to note that, owing to the functorial trans-
formation properties of wavefront sets under diffeomorphisms [28], a quasifree Had-
amard state ω′ on A (M ′,g′) induces a quasifree Hadamard state ω′ ◦ αψ on A (M, g)

whenever ψ ∈ homMan((M,g), (M
′,g′)). Furthermore, it was shown in [20] that

there exists a large set of quasifree Hadamard states for the Klein-Gordon field on ev-
ery globally hyperbolic spacetime (M,g). Moreover, the results in [44] show that the
GNS-representations of quasifree Hadamard states are locally quasi-equivalent, and in
[45] it was proved that the condition of intermediate factoriality is fulfilled for quasifree
Hadamard states. We may thus summarize these results in the subsequent:

Theorem 3.4. For each (M,g) ∈ Obj(Man), define S(M,g) as the set of all states on
A (M,g) whose GNS-representations are locally quasiequivalent to the GNS-
representation of any quasifree Hadamard state on A (M,g). This assignment results in
a state space which is locally quasi-equivalent and intermediate factorial, and S(M,g)
contains in particular all quasifree Hadamard states on A (M,g).

4. Dynamics

4.1. Relative Cauchy-evolution. For theories obeying the time-slice axiom one can de-
fine relative Cauchy-evolutions, as follows. Let (M1,g1) and (M2,g2) be in Obj(Man).
We suppose that there are globally hyperbolic sub-regionsN±j ofMj , j = 1, 2 containing
Cauchy-surfaces of the respective spacetimes. Moreover, we assume that there are iso-
metric (and orientation/time-orientation-preserving) diffeomorphisms ι± : N±1 → N±2
when the regions are endowed with the appropriate restrictions of the metrics g1 and
g2, respectively. Henceforth, we shall suppress the diffeomorphisms ι± in our notation
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and identifyN±1 andN±2 as being equal. The isometric embeddings ofN±j intoMj will

be denoted by ψ±j . They are depicted in the following diagram:

N+1
ψ+1−−−−→ M1

ψ−1←−−−− N−1
∥
∥
∥

∥
∥
∥

N+2
ψ+2−−−−→ M2

ψ−2←−−−− N−2
By the functorial properties of a locally covariant quantum field theory A , the previous
diagram gives rise to the next:

A (N+1 )
α
ψ
+
1−−−−→ A (M1)

α
ψ
−
1←−−−− A (N−1 )

∥
∥
∥

∥
∥
∥

A (N+2 )
α
ψ
+
2−−−−→ A (M2)

α
ψ
−
2←−−−− A (N−2 )

where we have, for the sake of simplicity, suppressed the appearance of the space-
time metrics in our notation. If the theory A obeys the time-slice axiom, then all the
morphisms in this diagram are onto and invertible, and hence one obtains from it an
automorphism β ∈ homAlg(A (M1),A (M1)) by setting

β = αψ−1 ◦ α
−1
ψ−2
◦ αψ+2 ◦ α

−1
ψ+1
.

Under certain circumstances (which may be expected to be generically fulfilled) it is
possible to form the functional derivative of the relative Cauchy-evolution with respect
to the metrics of the spacetimes involved in its construction. This functional deriva-
tive then has the meaning of an energy-momentum tensor. In fact, we will show below
for the example of the Klein-Gordon field that the functional derivative of the relative
Cauchy-evolution agrees with the action of the quantized energy-momentum tensor in
representations of quasifree Hadamard states.

In order to give these ideas a more precise shape, we introduce the following

Geometric assumptions.

• We consider a globally hyperbolic spacetime (M,
◦
g).

• We pick a Cauchy-surface C in (M,
◦
g), and two open subregions N± of M with the

properties:
– N± ⊂ int J±(C),
– (N±,

◦
gN±) are contained in Obj(Man),

– N± contain Cauchy-surfaces for (M,
◦
g).

• Let G be a set of Lorentzian metrics on M with the following properties:

– Each g ∈ G deviates from
◦
g only on a compact subset of the region

M(+,−) = M\cl[J−(N−) ∪ J+(N+)] ,
– each (M,g), g ∈ G, is a member of Obj(Man),
– C is a Cauchy-surface for (M,g), g ∈ G,
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– The set of differences g − ◦
g forms an open neighbourhood, U , with respect to

the topology of D (cf. [10]), of the zero element in the space of all symmetric
C∞-sections in T ∗M ⊗ T ∗M having compact support in M(+,−).

Remark. A sufficiently small open neighbourhood, U , of the zero section may always
be chosen such that G satisfies the other conditions listed above. Moreover, given any
smooth, one-parametric family φ(s), s ∈ R, of diffeomorphisms of M acting trivially
outside of M(+,−) and fulfilling φ(0) = idM , one can find for each g ∈ G an s(g) > 0

so that φ(s)∗ g ∈ G for |s| < s(g).

These assumptions suggest that one may view the metrics g in G as “perturba-

tions” around the metric
◦
g on M(+,−). Moreover, (N±,

◦
gN±) are also globally hyper-

bolic submanifolds of (M,g) for each g ∈ G. Hence there are isometric embeddings

ψ±g ∈ homMan((N±,
◦
gN±), (M,g)) for all g ∈ G as well as isometric embeddings

ψ±◦ ∈ homMan((N±,
◦
gN±), (M,

◦
g)). To these embeddings one can associate the rela-

tive Cauchy-evolution βg ∈ homAlg(A (M,
◦
g),A (M,

◦
g)) given by

βg = αψ−◦ ◦ α−1
ψ−g
◦ αψ+g ◦ α

−1
ψ+◦
. (12)

Remarks. (A) One may view βg as a “scattering morphism” describing the change that
the propagation of a quantum field undergoes passing through the region with the “metric

perturbation” g − ◦
g compared to the background metric

◦
g.

(B) There is some relation between the relative Cauchy-evolution and the evolution
of Cauchy-data from one Cauchy-surface to another which e.g. in the case of the scalar
Klein-Gordon field is also known to lead to C∗-algebraic endomorphisms [30, 42]. We
refer to the references for more discussion.

(C) Hollands and Wald [26] consider for the case of the free Klein-Gordon field re-
lated operators τ adv

g and τ ret
g , which would correspond to the operators αψ+◦ ◦ α−1

ψ+g
and

αψ−◦ ◦ α−1
ψ−g

.

As the theory A is locally covariant, it follows that the relative Cauchy-evolution is
insensitive to changing g into φ∗g when φ is a diffeomorphism of M that acts trivially
outside of the intermediate region M(+,−). More precisely, one obtains:

Proposition 4.1. Let φ be a diffeomorphism of M that acts trivially outside of M(+,−)
(i.e. φ(x) = x for all x in the complement of M(+,−)). Then for g ∈ G with φ∗g ∈ G
there holds

βg = βφ∗g .

Proof. It holds that φ is a morphism in homMan((M,g), (M, φ∗g)), and hence

φ ◦ ψ±g = ψ±φ∗g
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owing to the definition of ψ±g since φ acts trivially on N±. On the other hand, it holds
that

βg = αψ−◦ ◦ α−1
ψ−g
◦ αψ+g ◦ α

−1
ψ+◦

= αψ−◦ ◦ α−1
ψ−g
◦ α−1

φ ◦ αφ ◦ αψ+g ◦ α
−1
ψ+◦

= αψ−◦ ◦ α−1
φ◦ψ−g ◦ αφ◦ψ+g ◦ α

−1
ψ+◦

= αψ−◦ ◦ α−1
ψ−φ∗g

◦ αψ+φ∗g ◦ α
−1
ψ+◦

= βφ∗g . ��

We will now make assumptions that allow us to define the functional derivative of
βg with respect to g ∈ G. To this end, we assume that π is a Hilbert-space repre-

sentation of A (M,
◦
g), and that there is a dense subspace V of the representation-Hil-

bert-space H and a dense ∗-sub-algebra B of A (M,
◦
g) so that, for all smooth families

(−1, 1) � s �→ g(s) ∈ G with g(0) = ◦
g, there holds

d

ds
〈θ, π(βg(s) (B))θ〉

∣
∣
∣
∣
s=0

=
∫

M

bµν(x)δgµν(x) d
◦
µ(x) (13)

for all θ ∈ V, B ∈ B with a suitable smooth section x �→ bµν(x) in TM ⊗ TM (de-
pending on θ and B); we have written δg = dg(s)/ds

∣
∣
s=0, and d

◦
µ denotes the volume

form induced by
◦
g. Then we write

〈θ, δ

δgµν(x)
π(βgB)θ〉 = bµν(x) ,

and thus the functional derivative of the relative Cauchy-evolution βg with respect to
the metric g,

δ

δgµν(x)
π(βgB) ,

is defined in the representation π for all B ∈ B in the sense of quadratic forms on V.
(As announced before, these assumptions are realized for the free scalar Klein-Gordon
field in representations of quasifree Hadamard states, see Sect. 4.2 below. Note that, as
a consequence of the properties assumed of G, the set of all δg arising in the indicated
way is total in the space of all symmetric smooth sections in T ∗M ⊗ T ∗M supported
onM(+,−), so that bµν is uniquely determined by (13).) The functional derivative of βg

with respect to g describes the reaction of the quantum system to an infinitesimal local
change of the spacetime metric. As known in classical field theory, this is described by
the energy-momentum tensor, and we will find this corroborated in the quantum field
case by Thm 4.3 below. It is mentioned in [26] that the functional derivative of τ adv/ret

g

with respect to g describes the advanced/retarded response of the quantum system upon
infinitesimal metric changes.

When the indicated assumptions are fulfilled, then we find that the relative Cauchy-
evolution is divergence-free.
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Theorem 4.2. For all B ∈ B, one has

∇µ δ

δgµν(x)
π(βg(B)) = 0 , x ∈ M ,

in the sense of quadratic forms on V, where ∇ is the covariant derivative with respect

to
◦
g.

Proof. LetX be a smooth vector field onM which vanishes outside of a compact subset
of M(+,−), and let φ(s), s ∈ R, be the one-parametric group of diffeomorphisms that is
generated byX. By Prop. 4.1, we have β◦

g
−β

φ
(s)∗
◦
g
= 0 for all s with |s| < s0, and hence

one obtains that
d

ds
β
φ
(s)∗
◦
g
= 0 .

On the other hand, using the notation bµν(x) = 〈θ, δπ(βg(B))/δgµν(x)θ〉 and recalling
the definition of δβg/δgµν(x), we have

0 = d

ds
〈θ, π(β

φ
(s)∗
◦
g
(B))θ〉

∣
∣
∣
∣
s=0

=
∫

M

bµν(x)
d

ds

∣
∣
∣
∣
s=0

φ(s)∗
◦
gµν(x) d

◦
µ(x)

for all B ∈ B, θ ∈ V. Now one can conclude that ∇µbµν = 0 as in the case of

classical field theory (cf. [25], Sect. 3.3): It holds that d
ds

∣
∣
s=0 φ

(s)
∗
◦
gµν = £X

◦
gµν =

∇µXν + ∇νXµ, where £X denotes the Lie-derivative, and hence

0 =
∫

M

bµν(x)£X
◦
gµν(x) d

◦
µ(x)

= 2
∫

M

(∇µ(bµνXν)(x)− (∇µbµν(x))Xν(x)) d ◦µ(x) .

The first term in the last expression is a divergence and can be converted to a surface
integral which hence vanishes sinceX has compact support. AsX was an arbitrary vec-
torfield supported insideM(+,−), one thus concludes that∇µbµν(x) = 0 for x ∈ M(+,−);
on the other hand, bµν(x) = 0 for all x outside of M(+,−) according to the definition
of the functional derivative of the Cauchy-evolution. Thus ∇µbµν = 0 on M , and this
completes the proof. ��

4.2. Relative Cauchy-evolution for the Klein-Gordon field. In the present subsection we
investigate the relation between the functional derivative of the relative Cauchy-evolu-
tion for the quantum Klein-Gordon field with respect to the spacetime metric, and the
quantum field’s energy-momentum tensor. This will be presented in Theorem 4.3 below.
Before stating this result, we will discuss the form of the relative Cauchy-evolution for
the generally covariant Klein-Gordon field in some detail.

Let (M,g) be an object in Obj(Man) and let (N,gN) be a globally hyperbolic
sub-spacetime of (M,g), so that the identical injection ιN : N → M , ιN (x) = x is a
morphism in homMan((N,gN), (M,g)), where gN is g restricted to N . Furthermore,
let (R, σ ) denote the symplectic space of solutions of the Klein-Gordon equation (1) on
(M,g), and (RN, σN) the corresponding symplectic space of solutions on (N,gN). E
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and EN will denote the associated propagators, respectively. We have seen above that
ιN induces a C∗-monomorphism αιN : W(RN, σN)→ W(R, σ ) by

αιN (WN(ϕ)) = W(TNϕ) , ϕ ∈ RN ,

where we have denoted by WN( . ) the Weyl-generators of W(RN, σN) and by W( . )
those of (R, σ ). The map TN assigns to each element ENf , f ∈ C∞0 (N,R), of RN the
element Ef ∈ R.

Let us now consider the case where N contains a Cauchy-surface for (M,g). In
this case, Dimock [11] has shown that the map TN is surjective, i.e. TNRN = R. TN
is also injective (since it is symplectic), and we want to derive the form of the inverse
map T −1

N . To this end, let ϕ ∈ R, and let � be a Cauchy-surface for (M,g) contained
in N . There exists a pair of two other Cauchy-surfaces �adv and �ret for (M,g) in
N , where �adv lies in the timelike future and �ret in the timelike past of �, hence
U = int J−(�adv) ∩ J+(�ret) is an open neighbourhood of � whose closure in con-
tained in N . Now we choose a partition of unity {χadv, χ ret} of M so that χadv = 0
on J−(�ret) and χ ret = 0 on J+(�adv). Then the properties χadv + χ ret = 1 and
(∇µ∇µ + ξR +m2)ϕ = 0 imply

(∇µ∇µ + ξR +m2)(χadvϕ) = −(∇a∇a + ξR +m2)(χ retϕ) . (14)

Since the left-hand side vanishes on J−(�ret) and the right-hand side vanishes on
J+(�adv) while ϕ = Ef has support in J (supp f ) for some compactly supported
f , one deduces that both the left- and right-hand side expressions of (14) are compactly
supported in U ⊂ N . Using the properties of the propagator E, one can moreover show
(cf. [11])

E(∇µ∇µ + ξR +m2)(χadv/retϕ) = ±ϕ , ϕ ∈ R .

SinceE(∇µ∇µ+m2+ξR)(χadv/retϕ) is contained inE(C∞0 (N,R)) andEf �→ ENf ,
f ∈ C∞0 (N,R), is a symplectic map from (R, σ ) onto (RN, σN) owing to the unique-
ness of advanced and retarded fundamental solutions of the Klein-Gordon equation in
globally hyperbolic spacetimes, we can see that T −1

N : (R, σ )→ (RN, σN) is given by

T −1
N (ϕ) = ±EN(∇µ∇µ + ξR +m2)(χadv/retϕ) .

Now we wish to study the relative Cauchy-evolution for the scalar Klein-Gordon
field. We assume that we are in the situation described in the previous subsection: We

are given a globally spacetime (M,
◦
g), with subregions N± and M(+,−) on the latter of

which metrics g in a setG deviate from
◦
g, where these data are subject to the geometric

assumptions listed above.
For the generally covariant theory of the Klein-Gordon field, we see from our discus-

sion above that βg acts on the generators
◦
W( . ) of the CCR-algebra of the Klein-Gordon

field on (M,
◦
g) like

βg(
◦
W(ϕ)) =

◦
W(Fgϕ) ;

here, Fg :
◦
R →

◦
R is the symplectic map

Fg = TN−,◦ ◦ T −1
N−,g ◦ TN+,g ◦ T −1

N+,◦



The Generally Covariant Locality Principle 59

with

TN±,g : EN±,gf �→ EgιN±∗f , f ∈ C∞0 (N±,R) ,
TN±,◦ :

◦
EN±f �→

◦
EιN±∗f , f ∈ C∞0 (N±,R) ,

T −1
N±,g : φ �→ −EN±,gKg(χ

ret± φ) , φ ∈ Rg ,

T −1
N±,◦ : ϕ �→ −

◦
EN±

◦
K(χ ret± ϕ) , ϕ ∈

◦
R ,

where
◦
E,

◦
R,

◦
σ ,

◦
EN± ,

◦
RN± ,

◦
σN± ,Eg,Rg, σg andEN±,g,RN±,g, σN±,g denote the prop-

agators, range-spaces and symplectic forms corresponding to the Klein-Gordon equation

on the spacetimes (M,
◦
g), (N±,

◦
gN±), (M,g) and (M,

◦
g), respectively. The functions

χ
adv/ret
± are defined relative to suitable pairs of Cauchy-surfaces �adv/ret

± lying in N±.

By Kg and
◦
K we denote the Klein-Gordon operator

∇µ∇µ + ξR +m2

on the spacetimes (M,g) and (M,
◦
g), respectively. Note that (up to identification)

EN±,g =
◦
EN± for all g ∈ G according to our geometric assumptions, and thus also

RN±,g =
◦
RN± , σN±,g =

◦
σN± . This entails

Fgϕ =
◦
EKgχ

ret
− Eg

◦
Kχ ret

+ ϕ , ϕ ∈
◦
R , (15)

where we have dropped the embedding identifications ιN±∗ from our notation. This
relation will be the key ingredient in the proof of the next theorem. Prior to stating it,
some further preparation is required.

Let us select some arbitrary quasifree Hadamard state ω on A (M,
◦
g) = W(

◦
R,

◦
σ),

the Weyl-algebra of the Klein-Gordon field on (M,
◦
g). Then we will write

Wω(ϕ) = πω(
◦
W(ϕ)) , ϕ ∈

◦
R ,

for the Weyl-operators in the GNS-representation πω of ω; then we have

Wω(ϕ) = ei�̌ω(ϕ)

with suitable selfadjoint operators �̌ω(ϕ) in the GNS-Hilbert-space Hω, depending
linearly on ϕ, and

w
(ω)
2 (f, h) = 〈�ω, �̌ω(

◦
Ef )�̌ω(

◦
Eh)�ω〉 , f, h ∈ C∞0 (M,R) ,

with the GNS-vector�ω. Let Vω be the set of all vectors θ in Hω which are of the form
θ = B�ω where B is an arbitrary polynomial in the variables Wω(ϕ), �̌ω(ϕ

′) as ϕ and

ϕ′ vary over
◦
R. One can show that each θ ∈ Vω is in the domain of all operators �̌ω(ϕ)

and that the wavefront sets WF(w[θ ]
2 ) of the two-point functions induced by θ ∈ Vω,

w
[θ ]
2 (f, h) = 〈θ, �̌ω(

◦
Ef )�̌ω(

◦
Eh)θ〉 , f, h ∈ C∞0 (M,R) ,
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are of the same shape as those of the two-point functions of Hadamard states [17].
Furthermore, denoting by

�ω(f ) = �̌ω(Ef ) , f ∈ C∞0 (M,R) ,

the quantum field induced by �̌ω, one can show that there is for each pair of vectors
θ, θ ′ ∈ Vω a smooth function x �→ 〈θ,�ω(x)θ ′〉 on M so that

〈θ,�ω(f )θ ′〉 =
∫

M

〈θ,�ω(x)θ ′〉f (x) d ◦µ(x),

where we recall that
◦
g(x) is the determinant of

◦
g in the coordinates used for M .

These assertions rest on the fact that (1) �ω is an analytic vector for all �̌ω(ϕ), (2)
[�̌ω(ϕ),Wω(ϕ̃)] = −σ(ϕ, ϕ̃)Wω(ϕ̃), and iterated use of this relation, (3) the distribu-
tion f �→ w

(ω)
2 (f, h) is induced by a smooth function, and w[θ ]

2 (f, h) can be reduced to

a sum of products of such w(ω)2 (f, hj ) (with suitable coefficients) since ω is quasifree.
After these preparations, we obtain:

Theorem 4.3. Under the geometric assumptions listed above, there holds

δ

δgµν(x)
πω(βg

◦
W(ϕ)) = − i

2
[T µν(x),Wω(ϕ)] , ϕ ∈

◦
R, x ∈ M(+,−) , (16)

in the sense of quadratic forms on Vω, where Tµν is the generally covariant renor-

malized energy-momentum tensor of the quantized Klein-Gordon field on (M,
◦
g) in the

GNS-representation πω of ω, and ω is an arbitrary quasifree Hadamard state.

Remarks. (A) Note that the classical expression for Tµν is Tµν = 2√−g
δ

δgµν
SKG

∣
∣
∣
g=◦g

,

where SKG is the action integral of the Lagrangian density

LKG = 1

2

√−g
(

gµν∇µϕ∇νϕ − (m2 + ξR)ϕ2
)

.

Here we use the convention that Tµν is defined in this way, and that T µν = ◦
gµα

◦
gνβTαβ

and not T µν = 2√−g
δ

δgµν
SKG

∣
∣
∣
g=◦g

. The latter expression differs from the former, which

we use, by a sign.
(B) Instead of the generally covariant renormalized energy-momentum tensor one

may also use the energy-momentum tensor renormalized with respect to ω as reference
state, since the two definitions differ by a term which is a multiple of the unit operator
and hence is cancelled by the commutator on the right hand side of (16). In fact, one
may even use (after point-split regularization) the “unrenormalized, formal expression”
(cf. [49]) for the quantum energy-momentum tensor since only the commutator of the
energy-momentum tensor appears.

(C) Similarly one can show that

δ

δgµν(x)
Pg = − i

2
[T µν(x), P ]
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holds in the sense of quadratic forms on Vω for all polynomials

P =
∑

j≤�, kj≤n
�̌ω(ϕj,1) · · · �̌ω(ϕj,kj )

in the field operators, with

Pg =
∑

j≤�, kj≤n
�̌ω(Fgϕj,1) · · · �̌ω(Fgϕj,kj ) .

Proof. We will give the proof only for the case ξ = 0 in order to simplify notation;
however, the case of arbitrary ξ can be carried out along the same lines. For any smooth

family (−1, 1) � s �→ g(s) ∈ G with g(0) = ◦
g we write δg = dg(s)/ds

∣
∣
s=0, and

δyg = d
ds

∣
∣
s=0 ygs for any function yg depending on g ∈ G.

Let θ ∈ Vω. Since βg(
◦
W(ϕ)) =

◦
W(Fgϕ), one finds by a general argument (cf. e.g.

[17]) that

δπω(βg

◦
W(ϕ))θ = δ(W(Fgϕ))ωθ = i

2
{�̌ω(δFgϕ),Wω(ϕ)}θ , ϕ ∈

◦
R ,

where {A,B} = AB + BA denotes the anti-commutator. One must therefore derive an
expression for δFgϕ. It holds that (cf. (15))

δFgϕ = δ(
◦
EKgχ

ret
− Eg

◦
Kχ ret

+ ϕ)

=
◦
E(δKg)χ

ret
− ϕ +

◦
E
◦
Kχ ret

− (δEg)χ
ret
+ ϕ .

Now δKg is a partial differential operator whose coefficient functions are compactly sup-
ported within M(+,−) as a consequence of the geometric assumptions. Since M(+,−) ∩
J−(N−) = ∅, and suppχ ret− ⊂ J−(N−), it follows that

◦
E(δKgχ

ret− )ϕ = 0, and hence

δFgϕ =
◦
E
◦
Kχ ret

− (δEg)
◦
Kχ ret

+ ϕ .

On the other hand, it holds that

χ ret
− Eg

◦
Kχ ret

+ ϕ = χ ret
− E

adv
g

◦
Kχ ret

+ ϕ − χ ret
− E

ret
g

◦
Kχ ret

+ ϕ ,

and since Eadv
g

◦
Kχ ret+ has support in J+(N+), while χ ret− has support in J−(N−), the

first term on the right hand side vanishes, leaving us with

δFgϕ = −
◦
E
◦
Kχ ret

− (δE
ret
g )

◦
Kχ ret

+ ϕ .

Then we deduce from Eret
g Kgf = f for all f ∈ C∞0 (M,R) that

δEret
g = −

◦
Eret(δKg)

◦
Eret ,

and thus we obtain

δFgϕ =
◦
E
◦
Kχ ret

−
◦
Eret(δKg)

◦
Eret

◦
Kχ ret

+ ϕ .
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Now we use the same support arguments as before to conclude that χ ret−
◦
EadvδKg = 0

and δKg

◦
Eadv

◦
Kχ ret+ ϕ = 0, and hence it holds that

δFgϕ =
◦
E
◦
Kχ ret

−
◦
E(δKg)

◦
E
◦
Kχ ret

+ ϕ =
◦
E(δKg)ϕ

for all ϕ ∈
◦
R.

Therefore, our discussion so far shows that (16) is proved as soon as we have shown

that, given any smooth family g(s) ∈ G, s ∈ (−1, 1), with g(0) = ◦
g,

∫

〈θ, {�ω(x),Wω(ϕ)}θ〉(δKgϕ)(x) d
◦
µ(x)

= −
∫

〈θ, [T µν(x),Wω(ϕ)]θ〉δgµν(x) d
◦
µ(x) (17)

holds for all ϕ ∈
◦
R and all θ ∈ Vω; note that δKg is a differential operator onC∞(M,R)

containing δgµν . To verify that (17) holds, we shall evaluate the integral on the left hand
side in local coordinate patches. More precisely, we choose a locally finite covering of

M by coordinate patches Uj on each of which we pick coordinates so that |◦g(x)|, the

modulus of the metric determinant of
◦
g in those coordinates, is equal to 1. Then, on each

Uj , the coordinate expression of δKg assumes the form

δKg = 1

2
◦
gµν(∂

µ(
◦
gαβδgαβ))∂

ν − ∂µδgµν∂ν (|◦g| = 1) .

Now let {χj } be a smooth partition of unity on M subordinate to the covering {Uj }.
Using the coordinates with |◦g| = 1 on each patch and the coordinate expression for δKg

in these coordinates, one obtains by partial integration (observing that d
◦
µ(x) = dx in

the chosen coordinates)
∫

χj (x)〈θ, {�ω(x),Wω(ϕ)}θ〉(δKgϕ)(x) d
◦
µ(x) (18)

=
∫ (

〈θ, {∂µ�ω(x),Wω(ϕ)}θ〉∂νϕ(x)− 1

2
◦
gµν(x)〈θ, {∂α�ω(x),Wω(ϕ)}θ〉∂αϕ(x)

+ 1

2
◦
gµν(x)m2〈θ, {�ω(x),Wω(ϕ)}θ〉ϕ(x)

)

χj (x)δgµν(x) dx

+
∫

〈θ, {�ω(x),Wω(ϕ)}θ〉
(

∂µχj (x)∂
νϕ(x)− 1

2
◦
gµν(x)∂αχj (x)∂αϕ(x)

)

δgµν(x) dx .

We shall next investigate the right hand side of (17). The commutator of Wω(ϕ) with
the formal, point-split expression for the bitensor T µν(x, x′) is given by

〈θ, [T µν(x, x′),Wω(ϕ)]θ〉 = 〈θ, [∂µ�ω(x)∂
ν�ω(x

′),Wω(ϕ)]θ〉
− 1

2
◦
gµρ(x)Yρ

ν(x, x′)〈θ, [(∂α�ω(x)Y
α
β(x, x

′)∂β�ω(x′)

−m2�ω(x)�ω(x
′)),Wω(ϕ)]θ〉,
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where Y να(x, x′) denotes the bitensor of parallel transport of vectors in Tx′M to TxM .
In order to be able to take the limit x′ → x, one uses the relations

[�ω(h),Wω(ϕ)] = i[�ω(h), �̌ω(ϕ)]Wω(ϕ) and

i[�ω(x), �̌ω(ϕ)] = −ϕ(x) , h ∈ C∞0 (M,R), ϕ ∈
◦
R ;

the first relation holds generally in quasifree representations of the CCR-algebra as a
consequence of the Weyl-relations, and the second relation is easily deduced from the
equations

[�ω(h), �̌ω(ϕ)] = iσ (Eh, ϕ) = i
∫

hϕ d
◦
µ(x) ,

〈θ, [�ω(h), �̌ω(ϕ)]θ〉 =
∫ 〈θ, [�ω(x), �̌ω(ϕ)]θ〉h(x) d ◦µ(x)

which hold for all h ∈ C∞0 (M,R), θ ∈ Vω. Inserting these relations together with the
identity [AB,C] = [A,C]B + A[B,C] yields for all θ ∈ Vω,

〈θ, [T µν(x, x′),Wω(ϕ)]θ〉
= −〈θ, (∂µ�ω(x)Wω(ϕ)∂

νϕ(x′)+ ∂µϕ(x)Wω(ϕ)∂
µ�ω(x

′))θ〉
+ 1

2
◦
gµρ(x)Yρ

ν〈θ, Y αβ(∂α�ω(x)Wω(ϕ)∂
βϕ(x′)+ ∂αϕ(x)Wω(ϕ)∂

β�ω(x
′))θ〉

− 1

2
◦
gµρ(x)Yρ

νm2〈θ, (�ω(x)Wω(ϕ)ϕ(x
′)+ ϕ(x)Wω(ϕ)�ω(x

′))θ〉 ,

where we have abbreviated Yρν(x, x′) by Yρν , etc. In the last expressions, one can clearly
take the limit x′ → x without occurrence of any divergencies to obtain, upon observing
δgµν = δgνµ,

〈θ, [T µν(x),Wω(ϕ)]θ〉δgµν(x)
= − 〈θ, {∂µ�ω(x),Wω(ϕ)}θ〉∂νϕ(x)δgµν(x)
+ 1

2
◦
gµν(x)〈θ, {∂α�ω(x),Wω(ϕ)}θ〉∂αϕ(x)δgµν(x)

− 1

2
◦
gµν(x)m2〈θ, {�ω(x),Wω(ϕ)}θ〉ϕ(x)δgµν(x) . (19)

Exploiting now (18) and (19), we obtain
∫

(〈θ, {�ω(x),Wω(ϕ)}θ〉(δKgϕ)(x)+ 〈θ, [T µν(x),Wω(ϕ)]θ〉δgµν(x)
)

d
◦
µ(x)

=
∑

j

∫

χj (x)(〈θ, {�ω(x),Wω(ϕ)}θ〉(δKgϕ)(x)

+ 〈θ, [T µν(x),Wω(ϕ)]θ〉δgµν(x)) d ◦µ(x)

=
∑

j

∫

〈θ, {�ω(x),Wω(ϕ)}θ〉(∂µχj (x)∂νϕ(x)

− 1

2
◦
gµν(x)∂αχj (x)∂αϕ(x))δgµν(x) dx = 0 ,

since, owing to the fact that δg has compact support, only finitely many χj meet the
support of δg, where they add up to 1. This shows that Eq. (17) holds. ��
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5. Wick-Polynomials

The enlarged local algebras generated by the Wick polynomials defined in [7] also satisfy
the condition of local covariance. This follows immediately from the fact that they are
completions of the local algebras generated by the free field with respect to a locally
covariant topology (see e.g. [26] where this is made very explicit). However, the Wick-
polynomials themselves are in general not locally covariant quantum fields in the sense
of Def. 2.4.

This point has been taken up recently by Hollands and Wald [26], who have shown
that one may suitably define Wick-polynomials of the free scalar field which have the
property to be locally covariant quantum fields in the sense of Def. 2.4. Here we show
that this construction provides the solution of a cohomological problem.

Let W (M,g) denote the abstract algebra of Wick-polynomials on (M,g) ∈
Obj(Man) which was defined in [26] following the corresponding definition on Min-
kowski space in [15]. Let ω be a Hadamard state of the Klein-Gordon field on (M,g).
Then, heuristically, A ∈ W (M,g) has an expansion

A =
∑

∫

dx fn(x) :ϕ(x1) · · ·ϕ(xn) :ω , x = (x1, . . . , xn)

into Wick-polynomials with respect to ω, and by Wick’s Theorem, the product in
W (M,g) can be expanded in terms of the coefficients fn. Therefore, up to the ideal
generated by the field equation, W (M,g) may be realized as a space of sequences of
compactly supported distributions fn ∈ D′(Mn) satisfying a condition on the wave front
set and with a product depending on ω. A field corresponding to the Wick square of the
free field is defined by

:�2 :M,ω (f ) = (0, 0, f δ, 0, . . . )

with (f δ)(x, y) = f (x)δ(x, y). Here, δ(x, y) symbolizes the distribution concentrated
on the diagonal:

δ(H) =
∫

M

H(x, x)dµg(x) , H ∈ C∞0 (M ×M) .

However, this definition of the Wick square does not lead to a locally covariant field.
To see this, let ψ ∈ homMan((M

′,g′), (M,g)) and let αψ : W (M ′,g′)→ W (M,g)
denote the corresponding algebraic morphism. Then

αψ(:�
2 :M ′,ω◦αψ (x)) =:�2 :M,ω (ψ(x)) ,

hence local covariance neccessitates ω ◦ αψ = ω. Since there is no locally covariant
family of Hadamard states – as was discussed in Sect. 3.1 – the definition above does
not yield a locally covariant field.

Let us indicate how this problem may be solved. If ω and ω′ are two quasifree Had-
amard states over the spacetime (M,g), then there is a smooth function BM,ω,ω′ on
M so that : �2 :M,ω (x)− : �2 :M,ω′ (x) = BM,ω,ω′(x). These functions satisfy the
covariance condition

BM ′,ωαψ ,ω′αψ (x
′) = BM,ω,ω′(ψ(x′)) , x′ ∈ M ′ ,

for ψ ∈ homMan((M
′,g′), (M,g)), and moreover, they fulfill a cocycle condition

BM,ω,ω′ + BM,ω′,ω′′ + BM,ω′′,ω = 0 .
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The aim is now to trivialize this cocycle while preserving its covariance properties. In
other words, we are seeking to associate with each quasifree Hadamard state ω over
(M,g) a smooth function fM,ω ∈ C∞(M) so that the resulting family of smooth func-
tions transforms covariantly, i.e.

fM ′,ωαψ (x
′) = fM,ω(ψ(x′)) , ψ ∈ homMan((M

′,g′), (M,g)) ,

and trivializes the cocycle, i.e.

BM,ω,ω′(x) = fM,ω(x)− fM,ω′(x) , x ∈ M ,

for any pair of quasifree Hadamard states ω, ω′ over (M,g). Hence we would obtain a
locally covariant Wick-square by setting

:�2 :(M,g) (x) = :�2 :M,ω (x)− fM,ω(x)
for an arbitrary choice of quasifree Hadamard state ω over (M,g).

It is not too difficult to find the solution to this cohomological problem. Recalling
the definition of the Hadamard form by Kay and Wald [31], one finds that the diagonal
values of the smooth, non-geometrical term Hω (cf. Eq. (11)) of the two-point func-
tion of a quasifree Hadamard state ω have the required properties, i.e. a solution of the
cohomological problem is provided by defining

fM,ω(x) = Hω(x, x) , x ∈ M ,

for all quasifree Hadamard states ω over (M,g). Actually, Hω(x, y) is defined off the
diagonal x = y only up to aC∞-function owing to the fact that the geometrical termsGε
are affected by the like ambiguity. However, one can show that this ambiguity vanishes
for y → x and that, consequently, Hω(x, x) is well-defined, see the discussion in Sect.
5.2 of [26].

Higher order Wick-powers which are also locally covariant may then be obtained by
differentiating the generating functional

:eλ�(x) :(M,g)= e 1
2λ

2fω(x) :eλ�(x) :ω

with respect to the real parameter λ, where ω is any quasifree Hadamard state over
(M,g).

Finally we remark that we have only considered Wick-powers without derivatives. A
discussion of Wick-powers with derivatives is contained in a recent work by Moretti [33].

Acknowledgements. We would like to thank Stefan Hollands, Bernard Kay and Robert Wald for discus-
sions which were stimulating for the development of the present work.

6. Appendix

a) Proof of statement (α) in the proof of Thm. 3.2.

It is clearly sufficient to prove that F (πω◦α) ⊂ F (πω ◦α) for all statesω on aC∗-algebra
B and all C∗-algebraic morphisms α : A → B, where A is another C∗-algebra. Con-
sider the GNS-representation (Hω, πω,�ω) of B corresponding to the state ω. Define a
new Hilbert-space Hα as the closed subspace of Hω which is spanned by πω(α(A))�ω.
Then we may clearly identify the GNS-representation (Hω◦α, πω◦α,�ω◦α) of A induced
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by the state ω ◦ α with (Hα, πω ◦ α,�ω) since this triple has all the properties of the
GNS-triple corresponding to ω ◦ α, and the GNS-triple is unique (up to unitary identi-
fications). Hence, if ω′ ∈ F (πω◦α), then there is a density matrix ρ′ = ∑

j µj |φj 〉〈φj |
with unit vectors φj ∈ Hα such that

ω′(A) = tr(ρ′πω ◦ α(A))
holds for all A ∈ A. This density matrix is then also a density matrix on Hω ⊃ Hα ,
and owing to the just displayed equality, then also ω′ ∈ F (πω ◦ α) according to the
definition of the folium of a representation.

b) Proof of statement (β) in the proof of Thm. 3.2.

We quote the following result which is proved as Prop. 5.3.5 in [13]: Let B be a C∗-
algebra and π a representation of B on some Hilbert-space H; moreover, let H′ be
a closed subspace of H which is left invariant by π(B) and non-zero, and define the
subrepresentation π ′(B) = π(B) � H′, B ∈ B, of π on H′. Then π is quasi-equivalent
to π ′ if the von Neumann algebra π(B)′′ is a factor.

We apply this to prove statement (β) as follows: Let π be the identical representation
of the factor N on the Hilbert-space H, and let π ′ be the subrepresentation relative to
H′ = HN . According to the quoted result, F (π) = F (π ′). And this just says that for
each density matrix ρ on H there exists a density matrix ρN on HH = H′ so that

tr(ρ ·N) = tr(ρ · π(N)) = tr(ρN · π ′(N)) = tr(ρN ·N)
holds for all N ∈ N.
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