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Abstract

Algebraic quantum field theory is a general mathematical framework for rel-

ativistic quantum physics, based on the theory of operator algebras. It com-

prises all observable and operational aspects of a theory. In its framework the

entire state space of a theory is covered, starting from the vacuum over arbi-

trary configurations of particles to thermal equilibrium and non-equilibrium

states. It provides a solid foundation for structural analysis, the physical in-

terpretation of the theory and the development of new constructive schemes.

This survey is commissioned by the Encyclopedia of Mathematical Physics,

edited by M. Bojowald and R.J. Szabo. It is to be published by the Elsevier

publishing house.

1 Origin and achievements

Algebraic quantum field theory (AQFT) emerged from the framework of quantum

field theory [44,E1], which relies on the principle of locality (the quantum version

of Maxwell’s Nahwirkungsprinzip). The primary goal of quantum field theory is

the description of relativistic particles and their interactions. But there appeared

several questions.
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(a) Non-interacting field theories were known to describe particles that propa-

gate freely. But how can one extract from a theory its particle aspects in the

presence of interaction?

(b) Quantum physics exhibits non-local phenomena, such as entanglement and

the violation of Bell inequalities. How is this compatible with the locality

principle, in particular with the maximum signal velocity of light?

(c) It was realized that there are theories with different field content and differ-

ent Lagrangians which describe the same physics. Can one identify physi-

cally indistinguishable theories by some meaningful equivalence relation?

(d) Are there properties of quantum field theories that are generic, i.e. indepen-

dent of specific models?

Algebraic Quantum Field Theory answered these and related questions of phys-

ical interest in a general framework, based on first principles. It arose from the

problem of computing a scattering matrix for the multitude of elementary parti-

cles and their compounds that were observed in high energy experiments. The

idea to assign to each of these interacting particles a separate quantum field, as in

non-interacting theories, seemed to be odd. This problem was solved by Haag [33,

II.4]. He observed that it is sufficient for the computation of scattering matrices to

exhibit for each one-particle state suitable operators, built out of a few fundamen-

tal fields, which have non-vanishing matrix elements between the vacuum and the

one-particle state. There exist many operators with this property in general, but

the resulting scattering matrices do not depend on their specific choice.

Based on this insight, Haag proposed to reformulate quantum field theory as

follows [33, III]: instead of dealing with the technically subtle point-localized

quantum fields, one takes as basic input the algebras of genuine operators gen-

erated by fields in bounded subregions of spacetime. Thereby one focuses on

combinations of the fields describing observables. This restriction allows one to

postulate properties of direct physical significance for the resulting algebras. As

a matter of fact, it turned out to be irrelevant that the algebras are generated by

quantum fields.

The fundamental paradigm is that the linking of algebras with spacetime re-

gions uniquely characterizes a theory. The mathematical framework of AQFT is

put on a rigorous basis by the Haag-Kastler axioms [35], which rely on Einstein

causality and the Poincaré symmetry of Minkowski space. Later it was extended
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to generally covariant theories on globally hyperbolic spacetimes. Here we restrict

our attention to theories on four-dimensional Minkowski space.

A crucial feature of AQFT, describing systems with an infinite number of de-

grees of freedom, is the existence of disjoint representations of the algebras by

Hilbert space operators. They describe macroscopically distinguishable systems

differing, for example, by temperature, global charges, or their behavior at infin-

ity. This fact required an overview of the representations, in particular the iden-

tification of representations describing elementary states, such as the vacuum and

single particle states.

Vacuum representations are characterized by the existence of a Poincaré invari-

ant ground state; these representations may also describe single particle states,

such as the photon. But charged single particle states do not belong to vacuum

representations of the observables. The corresponding charged representations

were characterized by Doplicher, Haag, and Roberts [23] by the property that they

cannot be distinguished from the vacuum representation by observables which

are localized in the spacelike complement of given bounded regions. This ex-

cludes states with electrical charge because of Gauss’ law, but includes states with

nonzero baryon or lepton number. We say, these states carry a localizable charge.

With this input, Doplicher, Haag and Roberts were able to completely unravel the

structure of the corresponding representations. They clarified the origins of Bose

and Fermi statistics, the existence of global gauge groups that describe the charges

of particles, and they constructed charged Bose and Fermi fields that interpolate

between the vacuum and the charged states [23,24,26]. The dimension of physical

spacetime played an important role in this context. In two spacetime dimensions

other forms of statistics and symmetries can occur.

The analysis of gauge theories, in particular of the confinement problem, made

it clear that it is not sufficient to consider only particles with localizable charges.

Another approach, taken by Buchholz and Fredenhagen [16], therefore started

directly with the discussion of representations, where the bottom of the energy-

momentum spectrum contains some isolated mass hyperboloid, characterizing the

states of a single particle. There then exists an associated vacuum representation

which coincides with the particle representation on observables localized in the

complement of cone-shaped regions extending to spacelike infinity. Hence in

massive theories all particles can be localized in such cones. These weaker lo-

calizability properties still allowed it to arrive at results similar to those obtained

by Doplicher, Haag and Roberts for localizable charges. Other types of statistics
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and symmetries can appear for cone-localizable states already in three spacetime

dimensions.

In theories describing long range forces, such as quantum electrodynamics, the

charged particle structure is less well understood. The reason is that the particle

states always contain infinite clouds of low energy massless particles. For them

a meaningful classification is not available. However, in physical spacetime one

can make use of the fact that massless particles propagate with the speed of light

(Huygens principle). Thus the probability of finding an unlimited number of them

in a given forward lightcone, is equal to zero. One therefore restricts the states

to the observables in lightcones with fixed apex and concentrates on the proper-

ties of the resulting representations. In case of charged states carrying a simple

charge, like the electric one, one arrives in this manner at similar results as in mas-

sive theories. In particular, the charge structures are described by abelian gauge

groups [20].

There are other states of great physical interest which describe thermal equi-

libria. Since in infinite space Hamiltonians of physical interest have continuous

spectrum, the Gibbs-von Neumann description of equilibrium states by density

matrices in the vacuum representation can not be used, the thermal representa-

tions are disjoint from the vacuum representation. Instead, one characterizes the

equilibrium states by specific analyticity properties of their correlation functions,

the so-called KMS condition, named after Kubo, Martin, and Schwinger and in-

vented by Haag, Hugenholtz, and Winnink [34, E2]. In order to identify those

theories which admit equilibrium states for all positive temperatures, one needs

criteria which restrict the size of state space [21, 36]. These criteria impose con-

straints on the nature of correlations between observations in spacelike separated

regions. As a matter of fact, the correlations can be completely suppressed in

suitable states [12, 13]. This feature allows it to construct equilibrium states in

finite spacetime regions which coincide in their spacelike complements with the

vacuum. Thinking of high energy physics, it resembles the formation of a quark-

gluon plasma. Enlarging the regions occupied by these localized equilibrium

states, they have thermodynamic limits which satisfy the KMS condition [18].

There is a surprising relationship between the KMS condition in algebraic

quantum field theory and a cornerstone in the theory of operator algebras, viz.

modular theory, invented by Tomita and Takesaki [46, E3]. In the mathematical

theory one studies suitable algebras of operators on a Hilbert space, which do not

contain elements (apart from 0) that annihilate a given state. It turns out that these

4



algebras have an intrinsic time evolution for which the correlation functions of the

given state satisfy the KMS condition. Thermal states in AQFT fit into this frame-

work. But the mathematical results also imply, for example, that the vacuum state

is a KMS states with regard to the intrinsic dynamics of the algebra of observables

localized in a wedge region, bounded by two lightlike planes. The intrinsic time

evolution is in this case the one-parameter group of Lorentz boosts, which leaves

the wedge invariant. In physical terms, uniformly accelerated observers register

in the vacuum state some non-zero temperature (Unruh effect) [43].

The connection of AQFT with modular theory led to a variety of fruitful appli-

cations that could not be achieved within the conventional formalism of quantum

fields. It helped to establish duality relations (Haag-duality) between observables

in spacelike separated regions, which is crucial for the analysis of the properties

of superselection sectors [3]. It was also used in arguments establishing the uni-

versal structure of local algebras [29]. A remarkable property of these algebras

is the absence of finite dimensional projections. This must be kept in mind when

discussing measurements and operations. Arguments that claim their apparent

acausal behavior often ignore this fact and are therefore invalid. As a matter of

fact, modular theory has been a key ingredient in the discussion of entanglement.

Last, but not least, it has become an important tool in the rigorous constructions

of models which are not accessible by other methods, such as theories with fac-

torizing scattering matrices [40, E4].

These results confirmed the conviction that the physical content of a theory

is encoded in the net structure of the underlying local algebras of observables.

The question of how to characterize within the general formalism a specific the-

ory (e.g. by the reconstruction of a corresponding Lagrangian function from the

algebras) remained open, however. Only recently it has turned out that a com-

plementary view on this issue is more fruitful [17]. Regarding fields and their

composites, such as Lagrangian functions, as classical objects, corresponding

quantum operations can rigorously be defined. It provides for given Lagrangian

function, involving local interactions, a corresponding net of local algebras sat-

isfying the basic postulates of AQFT. The scheme works for theories involving

Bose as well as Fermi fields and leads, for example, to an algebraic understanding

of renormalization and related issues, such as the appearance of anomalies [9,10].

The prospects for a general constructive scheme within AQFT that applies to all

theories of physical interest, including gauge theories, are promising.

In the following the underlying notions, specific methods, and key results are
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outlined in greater detail. References to articles in this encyclopedia have an E in

front of their number. Other references are given by their numbers only.

2 The algebraic framework

As in any quantum theory, the observables and resulting basic operations are de-

scribed in AQFT by elements A of some non-commutative associative algebra A

over the complex numbers C together with an antilinear involution A 7→ A∗. The

algebra A may be thought of as being concretely given in some defining represen-

tation by operators acting on a Hilbert space, where A∗ is the adjoint of A. But,

as an abstract algebra, it has a multitude of other representations by Hilbert space

operators. One usually refers to A as algebra of observables.

Observables correspond to selfadjoint elements A = A∗ ∈ A, and basic opera-

tions are described by unitaries U ∈ A. Their adjoint action adU(A) :=UAU∗ on

any observable A does not change its spectrum and corresponding multiplicities.

Assuming that the spectrum of the observables A is bounded, which can always

be accomplished by a suitable (non-linear) choice of scale, they have a bounded

norm ‖A‖, inherited from the defining Hilbert space representation. This norm

satisfies for any A ∈ A the condition ‖A∗A‖ = ‖A‖2, the so-called C*-property.

Completing A with respect to this norm, one obtains a C*-algebra [33, Sect.

III.2.1]. It corresponds to the norm closure of a subalgebra of the algebra of all

bounded operators in the defining representation.

It is a distinctive property of AQFT that it comprises information as to where

and when measurements are made, i.e. about their localization in Minkowski

space M . (The metric on M , used here, is positive on timelike vectors, the veloc-

ity of light is c = 1.) Thus, given any bounded spacetime region O ⊂ M , there is

a corresponding subalgebra A(O)⊂A containing all operators which correspond

to measurements or operations within the ranges of O . As these sets of operators

become bigger if the localization region increases, one has the inclusions

A(O1)⊂ A(O2) if O1 ⊂ O2 . (2.1)

Due to this property of isotony, the mapping of spacetime regions to algebras,

O 7→ A(O), constitutes a net based on Minkowski space M from which the al-

gebra A of all observables can be recovered in the limit O ր M . The principle

of Einstein causality implies that observations in spacelike separated regions must
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be commensurable. Whence, because of the finite propagation speed of physical

effects, they cannot disturb each other in any way. This basic fact is encoded in

the condition of locality,

[A(O1), A(O2)] = {0} if O1 ⊥ O2 . (2.2)

It says that the commutator of any pair of observables which are localized in

spacelike separated regions, indicated by O1 ⊥ O2, has to vanish.

Relativity enters by assuming that the symmetry group of Minkowski space M ,

the proper orthochronous Poincaré group P
↑
+ =L

↑
+⋉R4, acts by automorphisms

α(λ ) on A, λ ∈ P
↑
+. Recalling that the elements of P

↑
+ relate inertial observers

to each other, the action of the automorphisms on the local algebras satisfies

α(λ )(A(O)) = A(λO) , λ ∈ P
↑
+ , (2.3)

in an obvious notation. Thus the localization regions of the algebras change un-

der the automorphisms according to the geometric action of the corresponding

Poincarè transformations on Minkowski space. These physically meaningful con-

ditions define a mathematical framework for the observables and operations in any

physically acceptable relativistic quantum theory on Minkowski space [33, III]. It

provides a basis for their general analysis, their physical interpretation, and it

paves the way for the construction of models.

3 Algebraic constructions

At present, the existence of interacting quantum fields in physical spacetime has

been accomplished only by perturbation theory, i.e. field operators are defined in

terms of formal power series whose convergence properties are not under control.

These methods have been refined and transferred to the algebraic setting, lead-

ing to perturbative AQFT [8, 42, E5]. Quite recently, the insights gained in these

investigations led to a new constructive scheme [17]. It yields for given clas-

sical Lagrangian function a concrete algebra which complies with all postulates

of AQFT. This construction is outlined in the following for scalar selfinteracting

quantum fields.

The ingredients in this approach are arbitrary classical, real, and smooth scalar

fields x 7→ φ(x) on Minkowski space M , which may be unbounded at infinity.
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Corresponding classical local observables are described by functionals of the form

φ 7→ F [φ ] :=
N

∑
n=0

∫

dx fn(x)φ(x)
n , (3.1)

where x 7→ fn(x) are real test functions with compact support in M . The support

of a functional F in Minkowski space is defined as the union of the supports of

the underlying test functions fn, n = 1, . . . ,N. The functional for n = 0 has empty

support. It can be assigned to any given spacetime region.

Lagrangian functions (densities) on M , describing local self-interactions of

the classical field, are of the form

x 7→ L(x)[φ ] := (1/2)(∂µφ(x)∂ µφ(x)−m2φ(x)2)−
J

∑
j=1

g j φ(x) j , (3.2)

where ∂µ denotes the partial derivative with regard to the µ-coordinate of x, m is

some mass value, and g j are real coupling constants. Integrating these Lagrangian

functions over all of M , whenever meaningful for a given field φ , yields a value

of its action.

However, the integral defining the action will in general not converge. But local

variations of the action can always be defined. To this end one introduces shifts of

the functionals F , putting Fφ0[φ ] := F[φ +φ0], where x 7→ φ0(x) are arbitrary real

and smooth scalar fields with compact support. Applying these shifts to the La-

grangian functions, one finds that x 7→ (L(x)[φ +φ0]−L(x)[φ ]) can be integrated

over all of M for any field φ . Thus the variations of the corresponding actions

given by

δL(φ0)[φ ] :=

∫

dx(L(x)[φ +φ0]−L(x)[φ ]) (3.3)

are well defined for all fields φ . As a matter of fact, one finds by partial integration

that δL(φ0) is a functional of the form (3.1) for fixed φ0.

Based on this classical input, one defines for given Lagrangian function L a

corresponding dynamical group GL that is associated with AQFT. It is the group

generated by elements SL(F), satisfying two basic relations, where F are arbitrary

functionals as defined in equation (3.1).

(1) Identifying the localization of SL(F) in Minkowski space with the support of

the corresponding functional F , a first equality describes causal relations between
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these elements. Whenever the support of a functional F1 is later than that of a

functional F2, i.e. there is some Cauchy surface in M such that F1 lies above and

F2 beneath it, one has

SL(F1)SL(F2) = SL(F1 +F2) . (3.4)

Note that the product on the left hand side is not commutative unless the supports

of the functionals are spacelike separated; only then can one find Cauchy surfaces

separating the supports in either temporal order. Hence relation (3.4) is an expres-

sion of relativistic causality which is more stringent than the condition of locality.

This relation also implies that the constant functionals φ 7→ c[φ ] := c, c ∈ R, de-

termine elements SL(c) of the center of GL. Moreover, they satisfy the equation

SL(c1)SL(c2) = SL(c1 + c2).

(2) The second relation, involving the dynamical input determined by the La-

grangian function L, is given by

SL(F) = SL(F
φ0 +δL(φ0)) (3.5)

for all functionals F and shift fields φ0. This equality is an integrated version of

the Schwinger-Dyson equation for quantum fields, where the given Lagrangian

function L enters [17, E5].

Heuristically, the elements SL(F) can be interpreted as basic operations which

describe the impact of perturbations induced by F on the underlying systems.

They may be thought of as time ordered exponentials of (i/h̄)F acting on a quan-

tum field. But no explicit quantization procedures are used in their construction.

As a matter of fact, the dynamical group GL is non-commutative from the outset

due to the arrow of time that enters in the defining relation (3.4).

We want to interpret the operations SL(F) as unitary operators acting on Hilbert

spaces. To this end we put SL(c) := e ic 1 for the constant functionals c ∈R, which

is compatible with relations (3.4) and (3.5). It amounts to choosing atomic units,

where Planck’s constant is h̄ = 1. A simple example of such a Hilbert space with

an action of the operations can be constructed as follows. The space is generated

by the complex linear span of vectors |S〉, S ∈ GL, where |SL(c)S〉 := eic|S〉. The

scalar product for these generating vectors is given by

〈S|S′〉 :=

{

eic if S′ = SL(c)S = eicS

0 otherwise.
(3.6)
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The action of the group GL on this space is defined by S|S′〉 := |SS′〉. Thus the

elements S ∈ GL act as invertible isometric operators and hence are unitary.

All linear combinations of these unitaries, which by the distributive law for

products form an algebra AL, are faithfully represented on this space, i.e. do not

vanish unless they are identically 0. To see this, consider the sum ∑k ckSk, where

group elements differing only by some phase factor are combined in a single term

with an appropriate c-number factor. Applying this operator to the vector |1〉,
the resulting vector has the norm-square ∑k |ck|

2 and hence vanishes only if all

coefficients ck are equal to 0, as claimed. So the operator norm on the Hilbert

space determines a C*-norm on AL. In a similar manner, any other faithful Hilbert

space representation of AL determines a norm on it. Since the C*-norm of any

unitary operator is equal to 1, the supremum of all C*-norms on AL is well defined

and one can equip the algebra with this maximal C*-norm and complete it in this

topology. The result is a C*-algebra, which is denoted by the same symbol.

The local subalgebras AL(O)⊂ AL are generated by elements SL(F), where F

has support in O ⊂ M . So the net O 7→ AL(O) satisfies the condition of locality.

There exist also automorphisms on the net which induce Poincaré transformations

P
↑
+. This follows from the fact that the underlying classical Lagrangian functions

transform as scalar fields under their action. Hence AL satisfies all Haag-Kastler

axioms.

This approach not only leads to a rigorous construction of theories fitting into

the general framework of AQFT for a large set of Lagrangians, but it also provides

a basis for computations. We briefly illustrate this fact in the simple case of a non-

interacting Lagrangian L0, where all coupling constants in equation (3.2) are put

equal to 0. One considers for arbitrary real test functions f on M the functionals

FW ( f ) of the form

φ 7→ FW ( f )[φ ] := (1/2)
∫

dxdy f (x)∆D(x− y) f (y)+
∫

dz f (z)φ(z) , (3.7)

where ∆D = (1/2)(∆R +∆A) is the mean of the retarded and advanced solutions

of the Klein-Gordon equation with mass m. The first term on the right hand side

of (3.7) defines some constant functional, the second one is linear in the underly-

ing field.

Putting W ( f ) := SL0
(FW ( f )) and making use of relations (3.4) and (3.5) yields
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after some computations the equalities [17]

W ( f1)W ( f2) = e−(i/2)
∫

dxdy f1(x)∆(x−y) f2(y)W ( f1 + f2) ,

W ((�+m2) f3) = 1 . (3.8)

Here f1, f2, f3 are real test functions, � is the d’Alembertian, and ∆ := (∆R −∆A)
(Pauli-Jordan function). Thus the operators W ( f ) are unitary exponentials of a

real, scalar, local quantum field that satisfies the Klein-Gordon equation and is

integrated with test functions f (Weyl operators). These well known operators are

elements of the algebra AL0
and appear in the present approach without imposing

any commutation relations from the outset. The exponent of the phase factor

reveals the use of atomic units, where h̄ = 1.

We conclude this outline by noting that a more refined version of the causality

relation (3.4), involving higher products, has further interesting consequences [17].

For example, given any Lagrangian L of the form (3.2), the corresponding net of

local algebras O 7→ AL(O) consists of subalgebras of the global algebra AL0
, de-

termined by the non-interacting Lagrangian L0; but these subalgebras differ from

the local algebras in the non-interacting theory. In other words, different theories

merely differ by the resulting nets in a fixed global algebra. In this way one ar-

rives at an algebraic version of the interaction picture. Vacuum representations

for different Lagrangians are, however, inequivalent in agreement with Haag’s

Theorem.

The algebraic constructions, explained here in simple cases, have been ex-

tended to theories involving an arbitrary finite number of interacting bosonic and

fermionic fields. Moreover, several questions of physical interest have been set-

tled. Among them are the time evolution of given initial data (time slice axiom),

the occurrence of symmetries (Noether’s theorem), and the impact of changes of

renormalization (renormalization group) [9, 10, E5].

This new constructive approach has contributed to the consolidation of AQFT,

showing that C*-algebras satisfying the Haag Kastler axioms exist in presence of

interaction. An important future step will be the analysis of their state spaces.

Given a dynamical algebra, one may be able to show that it has a vacuum state, in

analogy to the existence proofs of constructive quantum field theory. Or one may

be able to show that for a given dynamics the corresponding algebra does not have

any such state, cf. [1, 31, E6].

11



4 States and representations

The algebras A, complying with the basic assumptions of AQFT, are designed

to explore the properties of all ensembles which can appear in a theory. Dealing

with quantum theory, one makes statistical predictions about measuring results.

These are encoded in expectation functionals ω : A→C, i.e. linear maps from the

elements of the algebra to complex numbers. Each ensemble in which a system

can be prepared determines some functional ω . Given A ∈ A, the entity ω(A) is

interpreted as expectation value (mean of measuring results) in the corresponding

ensemble. Since the variance of an observable cannot be negative and A∗A is

an observable with non-negative spectrum, one demands ω(A∗A) ≥ 0 for A ∈ A.

One also requires the normalization ω(1) = 1. Any such positive and normalized

functional ω on A is called a state.

It is an important fact that every state ω determines a representation of the

algebra A, the GNS representation [33, Sect. III.2], which acts by operators on

some Hilbert space. It is given by a triple (π ,H ,Ω) consisting of a Hilbert space

H , a unit vector Ω ∈ H representing the given state, and a structure preserving

map (homomorphism) π : A→ B(H ) of the algebra A into the algebra B(H )
of bounded operators on H . The link between the two settings is provided by the

formula

ω(A) = 〈Ω,π(A)Ω〉 , A ∈ A . (4.1)

Thus expectation functionals of elements of A are represented by matrix elements

of corresponding operators on H . Given a state ω , the corresponding GNS-

representation is unique, up to unitary equivalence. Dealing with infinite systems,

different states in a theory lead in general to quite different (inequivalent) Hilbert

space representations. Hence the usage of the concept of state is more flexible

than starting with some particular Hilbert space representation of the algebra.

Given a state ω , one obtains other states by two physically meaningful op-

erations. The first one corresponds to perturbations, which are caused by mea-

surements or by operations such as local changes of the dynamics. They are de-

scribed by operators V ∈A which are scaled such that ω(V ∗V ) = 1. The resulting

states are given by A 7→ ωV (A) := ω(V ∗AV ), A ∈ A. The second operation is the

formation of mixtures of these perturbed states, which are described by convex

combinations. The norm closure of the resulting convex set of states is called the

folium of ω . All states in this folium can be described by density matrices in the

GNS–representation induced by ω .
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Two states are said to be disjoint if their respective folia have an empty inter-

section. In that case there exist classical observables distinguishing the folia. They

are obtained by sequences of observables whose commutators with any other ob-

servable tend to 0 and whose expectation values converge to different numbers

in the two folia. Prominent examples are global charges, temperature, and order

parameters distinguishing different phases. The situation is particularly simple in

the case of pure states, i.e. states which cannot be decomposed into convex combi-

nations of other states. Pure states describe ensembles with maximal information

and induce irreducible representations. The folia of any two pure states are either

disjoint or they coincide. One therefore speaks of sectors of the entire state space

which are formed by these folia.

Let us finally mention some important technical point in this context. If a

sequence {An ∈ A}n∈N converges in norm to some operator A, this entails the

uniform convergence of its expectation values,

lim
n

sup
ω

|ω(An −A)|= 0 , (4.2)

where the supremum is taken over all states. In a given folium one can consider

a weaker form of convergence. One demands that for any state in the folium, the

expectation values converge to those of some bounded operator A, which may not

be contained in A, however. Completing the local algebras in this weak topol-

ogy yields von Neumann algebras (also called W*-algebras) in the representation

fixed by the folium. These completions contain for example the projection op-

erators appearing in the spectral decomposition of local observables, which enter

in the probabilistic interpretation of the underlying states. Different folia induce

in general different weak topologies, so it is not meaningful to work with this

topology from the outset.

5 Elementary states

On any C*-algebra A there exists an abundance of states and corresponding rep-

resentations. Many of them are of limited physical interest since they describe

over-idealizations, such as infinite accumulations of matter. It is therefore of im-

portance to identify those states which are essential for the physical interpretation

of the theory.
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Conceptually, the simplest states are vacuum states [33, III.4]. A vacuum state

ω0 (there may be several such states or none) is by definition a ground state

which looks alike for all inertial observers. It therefore is invariant under Poincaré

transformations, ω0 α(λ ) = ω0, λ ∈ P
↑
+, where the product of the state and the

Poincaré automorphism indicates their composition. This implies that there exists

in the GNS-representation (π0,H0,Ω0), induced by ω0, a unitary representation

U0 of the Poinaré group which is given by, A ∈ A,

U0(λ )π0(A)Ω0 := π0(α(λ )(A))Ω0 , λ ∈ P
↑
+ . (5.1)

The correlation functions λ 7→ ω0(A
∗α(λ )(A)) are supposed to be continuous,

A ∈ A, so the unitary representation λ 7→ U0(λ ) is weakly continuous. Hence

the subgroup of unitaries representing the spacetime translations x ∈ R4 can be

presented by Stone’s theorem in the form U0(x) = eixP with generators P, which

are interpreted as energy-momentum operators. Their joint spectrum can be de-

termined by Fourier analysis of the correlation functions. Since a vacuum state

is a ground state for all inertial observers, the spectrum must be contained in the

forward lightcone V+ = {p ∈ R4 : p0 ≥ 0, p2 ≥ 0}, where p0 denotes the energy

component and p2 the Minkowski square of p. Finally, vacuum states can al-

ways be uniquely decomposed into a convex combination of disjoint pure vacuum

states. We restrict our attention in the following to pure vacuum states and assume

that the corresponding GNS-representations are faithful, i.e. they are regarded as

defining representation of A.

Vacuum states have many interesting properties. Among them are clustering

properties of vacuum correlation functions [2], the absence of local operators an-

nihilating the vacuum (Reeh-Schlieder property [41]), the entanglement of space-

like separated operations [45, E7], and the energetic effects of the spontaneous

breakdown of internal symmetries (algebraic Goldstone theorem [15]). Because

of lack of space, most of these results cannot be discussed here in detail.

The folium of the vacuum state contains only states which are neutral in the

sense that they can be obtained by applying observables to the vacuum vector,

a prominent example being the photon. Charged particles lead, by definition, to

disjoint representations of the underlying algebra.

The determination of the charged particle content of a theory is based on two

physical ideas. The first one, going back to Haag and Kastler [35], is to consider

sequences of states in the folium of the vacuum that consist, heuristically, of a

charge in a fixed region and a compensating charge in another region which is
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moved to spacelike infinity. The compensating charge at infinity does then no

longer contribute to the expectation values, so the limit states carry only the orig-

inal charge. The second idea has been advocated by Borchers [4] and is based

on the condition that elementary states of interest should be pure and admit a

representation of the group of spacetime translations with generators having joint

spectrum in V+. This spectrum is automatically invariant under Lorentz transfor-

mations as consequence of locality [5]. In theories where only massive particles

appear, one can identify charged single particle states by the condition that the

spectrum does not contain the discrete point p = 0, corresponding to the vacuum,

but an isolated mass shell p2 =m2 for some mass m> 0. As will be discussed, this

input can be used for the construction and analysis of composite states containing

several particles.

This approach fails, however, in theories with long range forces, such as quan-

tum electrodynamics. There particle states carrying an electric charge can neither

be localized in bounded regions of Minkowski space because of the Coulomb field

which they carry along. Nor is their mass shell separated from the rest of the spec-

trum due to clouds of low energy photons which inevitably accompany them as a

consequence of Gauss’s law and locality. There is progress in the identification of

such particles [19, E8, E9], but this topic deserves further studies.

6 Sectors, statistics, and charged fields

Having identified the elementary charged states in a theory, a number of subse-

quent questions arise. First, given two charged states, does there exist a state

containing both charges (addition of charges)? Second, does there exist for each

charged state a state carrying the opposite charge (charge conjugation)? Third,

can one assign to charged states a particular statistics (Bose-Fermi alternative)?

And forth, do there always exist charged fields which create the charged states

from the vacuum and transform as tensors under the action of some global gauge

group? These questions require an answer, since one has initially only the ob-

servable algebra A of a theory at ones disposal and charge-carrying fields are not

given from the outset.

For localizable charges, all of these questions have found an affirmative answer

in AQFT. Starting from the characterization of elementary states as local excita-

tions of the vacuum, Doplicher, Haag and Roberts have established these facts in
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extensive investigations [23, 24, 26]. These were later supplemented by Buchholz

and Fredenhagen for theories containing exclusively massive particles [16]. The

latter results cover theories, where certain particle states fail to be localized exci-

tations of the vacuum since they carry gauge or topological charges. The central

ideas and methods underlying these results are outlined in the following.

In order to characterize elementary states ω on a given algebra A which are

local excitations of a vacuum state ω0, one compares the respective expectation

values of observables that are localized in distant regions. Given a causally closed

region O , which has the form of a double-cone (intersection of a forward and

a backward lightcone), let Oc be its spacelike complement. The corresponding

subalgebra A(Oc)⊂A is defined as the algebra generated by all local observables

having their support in double-cones contained in Oc. The state ω is then said to

describe a local excitation of ω0 if for every ε > 0 there exists some sufficiently

large double cone O such that

‖ω −ω0‖Oc := sup
A∈A(Oc) , ‖A‖=1

|ω(A)−ω0(A)|< ε . (6.1)

In simple terms, the two states cannot be distinguished by measurements at large

spacelike distances.

It is a consequence of relation (6.1) that the states ω and ω0, restricted to

A(Oc), induce equivalent representations of this subalgebra even though they are

disjoint on A. Moreover, the GNS representation of A induced by ω is faithful.

Using methods of the theory of operator algebras, it follows that it can be repre-

sented on the vacuum Hilbert space H0 in a manner such that it coincides with

the vacuum representation on A(Oc). This representation can be continued to the

weak closures of the local algebras in the vacuum representation. For the sake

of simple notation, we denote in this section the weak closures of π0(A (O)) by

R(O) := π0(A (O))− and the inductive norm limit of the resulting net O 7→R(O)
by R. We also assume that the algebras R(O) are maximal in the sense that

they contain every operator which commutes with all operators Ac ∈ π0(A (Oc))
(“Haag duality”). The representation of the extended algebra R⊃ π0(A), induced

by ω , is denoted by (ρ ,H0,Ω0), that is

ω(R) = 〈Ω0,ρ(R)Ω0〉 , R ∈R . (6.2)

Recalling that the GNS-representations are unique up to unitary equivalence, the

vector Ω0 ∈ H0, which represents ω0 in the vacuum representation, now repre-

sents the charged state ω in the representation ρ . The localization properties of ω
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and the feature of Haag duality imply that the represented algebra ρ(R) is not just

any subalgebra of bounded operators on H0: it is contained in the original domain

R of ρ . Moreover, the representation ρ coincides with the vacuum representation

on the algebra R(Oc),

ρ(R) = R if R ∈R(Oc) , (6.3)

revealing the fact that the charge can be localized in the bounded region O .

In view of these properties, the first question raised above has an immediate

answer: given representations ρ1 and ρ2 that are induced by elementary charged

states, a representation containing both charges is obtained by their composi-

tion ρ1ρ2. This composition is well defined since the ranges of the representations

are contained in their domains R. The answer to the second question, concerning

the existence of opposite charges, is immediate for the family of representations ρ
induced by states carrying so-called simple charges [23]. The corresponding rep-

resentations ρ are distinguished by the property that they map the algebra R onto

itself, so they have an inverse ρ−1. An example of a simple charge is univalence,

which distinguishes Bosons from Fermions. The representation ρ−1 is localized

in the same region as ρ and compensates the charge of ρ by composition. Only

these simple charges are discussed in the following; an outline of the general case

of non-simple charges, where ρ(R) is a proper subalgebra of R, would require

more space.

Coming to the third question concerning statistics, one makes use of the fact

that the considered representations are translation covariant, so translations of the

charges do not change their values. To see this, let us recall that the translations

in the vacuum representation act by unitaries U0 on the vacuum Hilbert space

H0; their adjoint action on R, denoted by α0, leaves this algebra invariant. Sim-

ilarly, the translations in representations ρ induced by elementary states act by

unitaries Uρ on H0, hence their adjoint action is defined on R as well. Given a

representation ρ with charge contained in O , as explained above, the translated

representation with charge contained in O + x is given by

xρ := α0(x)ρ α0(−x) = ad(U0(x)Uρ(−x))ρ , x ∈ R
4 . (6.4)

Thus the representations ρ and xρ are unitarily equivalent, whence they carry the

same charge. The unitaries (called charge transporters) which connect the rep-

resentations are elements of the local algebra R(O0,x), where O0,x is any double

cone containing O and O+x. So they are elements of the algebra R for all localiz-

able charges. It is noteworthy that the adjoint action of the unitaries Uρ(x)U0(−x)
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on R allows one to recover in the vacuum sector the charged representation ρ in

the limit of large spacelike x ∈ R4. This procedure corresponds to the heuristic

idea of creating charged states from bi-localized neutral states.

The statistics of a charged representation ρ is determined by analyzing the

products (compositions) xρyρ for translations x,y ∈ R4. One first notices that the

resulting representations are all equivalent to the representation ρ2 := ρρ since

the charge-transport operators are elements of R. In the case of simple charges,

considered here, ρ2 maps R onto itself again. One then considers the products for

translations x,y such that the charge of xρ in O+x is spacelike separated from the

charge of yρ in O+y. It is an important consequence of the locality property of the

observables that xρyρ = yρxρ , i.e. the creation of charges in spacelike separated

regions does not depend on their order [23]. Putting Γ(x) := U0(x)Uρ(−x), one

has

xρyρ = ad(Γ(x))ρ ad(Γ(y))ρ = ad(Γ(x)ρ(Γ(y))ρ2 , x,y ∈ R
4 , (6.5)

since the composition of maps is associative. Now ρ2(R) = R is irreducibly

represented in the representation induced by the pure vacuum state. Hence relation

(6.5) implies that the unitary charge-transport operators Γ(x)ρ(Γ(y)), respectively

Γ(y)ρ(Γ(x)), shifting the two charges in ρ2 into spacelike separated regions O+x,

respectively O + y, can only differ by some phase factor ερ(x,y),

Γ(x)ρ(Γ(y)) = ερ(x,y)Γ(y)ρ(Γ(x)) , O + x ⊥ O + y . (6.6)

In a final deformation argument one uses the fact that in four spacetime dimen-

sions one can exchange continuously any two spacelike separated double cones

whilst keeping them spacelike apart. This fact entails that the phase factors do not

depend on the admissible translations, i.e. one has ερ := ερ(x,y) for all such x,y.

Moreover, one obtains for their square ε2
ρ = 1. Thus there exists for each sector of

a simple charge, described by a representation ρ , a corresponding unique number

ερ ∈ {±1}, called statistics parameter.

The statistics parameters enter in the commutation relations of field opera-

tors that render the representations ρ . We briefly indicate their construction for

representations describing self-conjugate charges; there the representation ρ2 is

equivalent to the vacuum representation, i.e. ρ2 = adV for some unitary opera-

tor V ∈ R(O). In this case the field operators are defined on the direct sum of

the neutral and the charged representation space, described by the vectors (Φ, Ψ),
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where Φ,Ψ ∈ H0. The observables and translations are represented there by

R :=

(

R 0

0 ρ(R)

)

, R ∈R , U(x) :=

(

U0(x) 0

0 Uρ(x)

)

, x ∈ R
4 . (6.7)

One then defines unitary field operators F on this space, putting

F :=

(

0 1

V 0

)

, F
∗ =

(

0 V ∗

1 0

)

, (6.8)

where V ∈R(O) is the unitary operator given above. This yields, in an obvious

notation,

FRF
∗ =

(

ρ(R) 0

0 V RV ∗

)

=

(

ρ(R) 0

0 ρ2(R)

)

= ρ(R) , R ∈R . (6.9)

Hence the field implements the action of ρ and commutes with all observables

in R(Oc). In this sense, it is localized in O . Putting F (x) := U(x)FU(x)∗ for

x ∈ R4, it follows that

ΓΓΓ(x) := F (x)F ∗ =

(

U0(x)Uρ(x)
∗ 0

0 Uρ(x)VU0(x)V
∗

)

=

(

Γ(x) 0

0 ρ(Γ(x))

)

. (6.10)

Thus ΓΓΓ(x) comprises the charge transfer operators of the representations ρ , re-

spectively ρ2 = adV . The properties of these transfer operators, established in

relation (6.6), lead to the equality for all x,y such that O + x ⊥ O + y

F (x)F (y) =ΓΓΓ(x)ρ(ΓΓΓ(y))F 2 = ερ ΓΓΓ(y)ρ(ΓΓΓ(x))F 2 = ερ F (y)F (x) . (6.11)

So, depending on the sign of ερ , the field operators localized at spacelike distances

satisfy Bose, respectively Fermi, commutation relations. Which sign appears is

encoded in the net structure of the underlying observable algebra.

Let us finally remark that there exists a unitary representation of the group Z2

on the underlying representation space which is given by

Z =Z
∗ =

(

1 0

0 −1

)

. (6.12)

Its adjoint action leaves all observables R invariant and changes the sign of the

fields F , so it is an example of a unitary representation of a global gauge group. To

summarize, proceeding in the present example from two disjoint elementary states
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on the algebra of observables, one obtains an extension of the observable algebra

by local field operators, satisfying either Bose or Fermi commutation relations

at spacelike distances. They generate from the vacuum state, together with the

observables, a Hilbert space containing all charged and neutral states. Using them,

one can then compute collision states and scattering matrices [24, E8], such as in

standard quantum field theory. However, in contrast to the standard setting, the

present approach takes into account all particles occurring in a theory, including

those for which no fields were initially specified. This is essential for proofs of

asymptotic completeness [E8].

After this survey of methods underlying sector analysis, let us summarize the

wealth of results which have been obtained on this topic so far. First, these in-

vestigations were performed for all kinds of localized elementary states [24]. The

resulting representations ρ then no longer need to have an inverse; they may be

morphisms which map the observable algebra into itself, not onto. The prod-

ucts of these morphisms can generically be decomposed into finite direct sums

of morphisms which induce irreducible representations of the observables on the

underlying vacuum Hilbert space. Every such irreducible morphism determines

a statistics parameter that indicates its Bose, respectively Fermi (para)statistics.

Moreover for any such morphism ρ there exists a conjugate morphism ρ whose

product with ρ contains the vacuum representation ι .

The construction of field operators in this general framework turned out to be

difficult and required advanced methods from category theory. It was finally ac-

complished by Doplicher and Roberts [26]. They proved that for the collection of

localized morphisms in a theory there exists a unique extension of the observable

algebra by compactly localized field operators, resulting in a field algebra. That

algebra generates from the vacuum a representation space of the observables, de-

scribing all finite configurations of charged and neutral elementary systems. On

this space, there acts a faithful unitary representation of a compact group under

whose action the fields transform as tensors, while the observables remain fixed.

Thus this group operates as a global gauge group. The fields satisfy Bose, respec-

tively Fermi commutation relations at spacelike distances. Finally, there exists on

the representation space a continuous unitary representation of the covering group

of the Poincaré group with positive energy. Its adjoint action on the fields trans-

forms their localization regions covariantly, in accordance with their statistics. So

also in this general case the structures have been established which were taken for

granted in standard quantum field theory.
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There remained, however, the question whether this analysis covers all situ-

ations of physical interest in theories with short range forces, describing exclu-

sively massive particles at large scales. This question was raised and answered by

Buchholz and Fredenhagen [16]. Without any a priori assumption about localiza-

tion properties, they proceeded from an elementary charged state on the algebra

of observables. If the bottom of the energy-momentum spectrum in the resulting

representation consists of some isolated mass shell, signaling a single particle,

there exists also an accompanying vacuum state. The states in the sector of the

particle are excitations of the vacuum which can be localized in spacelike cones

S ⊂ M that extend to spacelike infinity. More precisely, relation (6.1) holds for

the norm distance between the two states if the region Oc is replaced by S c, the

spacelike complement of any spacelike cone S containing some sufficiently big

neighborhood O of the origin.

Given such a particle state and spacelike cone S , one obtains as in case of lo-

calizable charges a representation of the algebra of observables which acts on the

vacuum Hilbert space and is identical to the vacuum representation on the algebra

A(S c). But in general it does not map the full algebra of observables into itself,

so defining the composition of these representations requires more work. Remark-

ably, all basic results obtained for localizable charges can also be established in

this case. Among them are the Bose, respectively Fermi, (para)statistics of sec-

tors, the existence of conjugate sectors, of a field algebra generated by charged

field operators satisfying Bose, respectively Fermi commutation relations, and of

a global compact gauge group acting on the fields and leaving the observables

invariant. Moreover, the possibility of infinite statistics, which was originally left

open in case of localizable charges, was proven not to occur in massive particle

theories [28]. These results cover massive gauge theories, where non-confined

charged particles appear at asymptotic time, or particles carrying a fluctuating

topological charge.

As already mentioned, a complete understanding of the sector structure and

statistics has not yet been accomplished for theories describing long range forces

between local observables. The reasons are the infinite clouds of massless parti-

cles which are created by these interactions. They lead to an abundance of disjoint

infrared sectors which cannot be discriminated in experiments. In other words, the

theoretical concept of sectors is too subtle in these cases. In order to isolate the

physically relevant structures, Buchholz and Roberts proposed to form equiva-

lence classes of sectors, making use of the fact that infrared sectors cannot be
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distinguished by local observables in any given lightcone [20]. This feature fits

with the fact that one cannot make up measurements in the past, and it explains

why infrared sectors do not play a role in experiments.

Based on these insights, Buchholz and Roberts performed an investigation of

the sector structure of the algebras of observables localized in any given lightcone.

Restricting attention to sectors which are excitations of a vacuum state in spacelike

(hyper)cones, they succeeded in identifying the sectors carrying simple charges.

They then established the fact that these sectors have the same properties with

regard to statistics, charge conjugation, existence of a global gauge group, and

of charged fields as the sectors in massive theories in Minkowski space. These

results complement in some sense an investigation of localizable charges in arbi-

trary globally hyperbolic spacetimes [32, E10]. It would be desirable to extend it

to all elementary cone-localized systems in lightcones in order to determine their

possible structures.

We conclude this section by noting that investigations of the sector structure

have also been performed in low spacetime dimensions. There other types of

statistics can appear, described by representations of the braid group. The sector

structure can then in general no longer be described by the representation theory

of a compact group, it is determined by other group-like structures. We refer the

interested reader to [E11].

7 Thermal states and modular theory

Elementary systems play a fundamental role in the interpretation of the micro-

scopic properties of a theory. One then aims to extract from it its macroscopic

features, such as the properties of thermal equilibrium states. Conversely, the

requirement that a theory ought to have a decent macroscopic behavior leads to

constraints on its microscopic structure. We outline in this section some basic

results in this respect and indicate a few consequences of physical interest. A

more extensive discussion of equilibrium states can be found in [E2].

In the standard approach to equilibrium states one proceeds from finitely ex-

tended systems, e.g. confined in a box, and considers Gibbs-von Neumann ensem-

bles whose density matrix is described by exponential functions of the negative

Hamiltonian, multiplied with the inverse of the temperature T > 0. This works
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whenever the level density of the system is such that the trace of this operator is

finite. That feature disappears, however, if one proceeds to the thermodynamic

limit. Dealing in AQFT from the outset with infinitely extended systems, there

arises the question whether one can recover from it this level density, which en-

codes information about the number of degrees of freedom in a theory.

The idea for such a procedure goes back to Haag and Swieca [36]; it was

later refined by Buchholz and Wichmann [21]. One considers excitations of the

vacuum state ω0 on the observable algebra A which are localized in given bounded

spacetime regions O and suppresses their high energy contributions. Thereby, one

obtains in the resulting GNS-representation linear maps θT,O : A(O)→ H0,

θT,O(A) := e−(1/T )Hπ0(A)Ω0 , A ∈ A(O) , (7.1)

where H is the generator of the time translations in a chosen Lorentz frame.

Restricting these maps to operators in the unit ball of A(O), one determines their

ranges in the vacuum Hilbert space H0. Heuristically, one considers the smallest

Hilbert-box into which such a range fits, i.e. an infinite dimensional cuboid in H0,

centered at 0, which contains it. Of primary interest are theories, where the sums

of the side lengths of these cuboids are finite; these sums replace the partition

functions of finite systems. One can then define corresponding norms ‖θT,O‖1 of

the maps. If these norms are finite, the maps are said to be nuclear.

Theories, where these norms exhibit a physically meaningful behavior in the

limit of large temperatures and regions, have been shown to admit thermal equilib-

rium states on the algebra of observables for all temperatures [18]. An important

intermediate step in the proof is the demonstration that these theories have the so-

called split property [13,25]: given any pair of bounded regions O1 ⋐ O2, viz. the

closure of O1 is contained in the interior of O2, there exists a vector ΩO1,O2
∈ H0

such that for all operators R1 ∈ π0(A(O1)) and R′
2 ∈ π0(A(O2))

′ one has

〈ΩO1,O2
,R1R′

2 ΩO1,O2
〉= 〈Ω0,R1Ω0〉〈Ω0,R

′
2Ω0〉 . (7.2)

Here the prime ′ indicates the algebra of all bounded operators on H0 which com-

mute with the given algebra. By locality, π0(A(O2))
′ ⊃ π0(A(O

c
2 ), so the equality

shows that there exist product states in the vacuum sector in which measurements

in a bounded region and its spacelike separated complement are completely un-

correlated. One then considers the projection EO1,O2
onto the subspace of H0

spanned by

R1 ΩO1,O2
, R1 ∈ π0(A(O1)) . (7.3)
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This projection commutes with all elements of π0(A(O1)) and transfers the ele-

ments of R′
2 ∈ π0(A(O2))

′ into the vacuum state,

EO1,O2
R′

2 EO1,O2
= 〈Ω0,R

′
2Ω0〉EO1,O2

, R′
2 ∈ π0(A(O2))

′ . (7.4)

As an aside, if one replaces in (7.3) the algebra π0(A(O1)) by π0(A(O2))
′, one

arrives at a projection in π0(A(O2))
− that transfers the elements of π0(A(O1)) into

the vacuum state. This entails an algebraic version of the split property. Turning

back to the problem at hand, one finds that the operators EO1,O2
e−(1/T )HEO1,O2

have a finite trace on H0. Dividing the operators by its value, one obtains density

matrices which replace in the present setting the Gibbs-von Neumann ensembles.

Moreover, for suitably increasing regions O1 ⋐ O2 approaching M , the resulting

sequences of states have weak limits on the algebra A, which are designed to

describe global equilibrium states for the given temperature T .

As was shown by Haag, Hugenholtz, and Winnink, it is a distinctive property

of equilibrium states at a given temperature that they satisfy the KMS condition,

which is briefly recalled here. Let α(t), t ∈ R, be the automorphism inducing the

time translations on A in a chosen Lorentz frame. A state ωT on A satisfies the

KMS condition at temperature T if each correlation function

t 7→ ωT (A1α(t)(A2)) , A1,A2 ∈ A , (7.5)

can be extended to the strip ST := {z ∈ C : 0 ≤ Imz ≤ (1/T )}, is continuous

there and analytic in the interior, and has at the upper rim the boundary value

t 7→ ωT (α(t)(A2)A1). Any such state is invariant under the action of the time

translations. The thermodynamic limit states described above comply with this

condition if A consists of operators which transform norm-continuously under the

action of the time evolution. It is an open problem whether this technical assump-

tion can be dropped.

The discovery of the KMS condition in algebraic quantum field theory pro-

vided a fruitful link with developments in the theory of operator algebras, viz.

modular theory, established by Tomita and Takesaki. We briefly summarize here

some essential points, cf. also [46,E3]. Within the mathematical setting, one deals

with weakly closed operator algebras R which are represented on some Hilbert

space H and have a cyclic and separating vector Ω; that is, the subspace RΩ
is dense in H and, apart from 0, there is no operator in R which annihilates Ω.

Given these ingredients, one considers the antilinear operator S : RΩ →H given

by

SRΩ := R∗Ω , R ∈R . (7.6)
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It is a densely defined, closable operator whose closure has a polar decomposition,

denoted by S = J∆1/2. Here the operator J, called modular conjugation, is an

antiunitary involution, J2 = 1; the operator ∆, called modular operator, is positive

and satisfies ∆Ω = Ω. The central result obtained in this setting are the equalities

of sets, involving the adjoint actions of these operators on the algebra R,

JRJ =R
′ , ∆it

R∆−it =R , t ∈ R . (7.7)

Denoting by δ (s) the adjoint action of the unitaries ∆is on R, s∈R, called modular

automorphism group, one considers the correlation functions

s 7→ 〈Ω,R1δ (s)(R2)Ω〉 , R1,R2 ∈R . (7.8)

Remarkably, they satisfy the KMS condition for temperature 1; it can be replaced

by any other value by an adjustment of the exponent of the modular operator.

There is an important converse of this result with regard to its applications in

physics: in the GNS-representation induced by a KMS state on A, the dynamics

coincides (up to rescalings) with the corresponding modular automorphism group,

acting on the weak closure of the represented algebra of observables.

These observations have found numerous applications in AQFT, where the oc-

currence of cyclic and separating vectors for (sub)algebras of the observables A is

quite common (Reeh-Schlieder property [41]). With regard to the physical inter-

pretation of the theory, a prominent result is the Bisognano-Wichmann theorem

which deals with the vacuum representation of the subalgebras of observables

localized in regions bounded by two lightlike planes (wedges). It says that the

modular group for any such wedge algebra and the vacuum state coincides with

the automorphic action of the one-parameter group of boosts leaving the wedge

invariant. Since the boosts can be interpreted as dynamics of a uniformly ac-

celerated observer, this result establishes the general nature of the Unruh effect

in AQFT [43]. Moreover, the respective modular conjugations agree with the

PCT-operator, multiplied with a Poincaré transformation which transforms the

parity P into a reflection about the spatial plane tangent to the wedge.

The discovery that in this particular case the modular structure is related to

spacetime symmetries has triggered interest in the modular operators of other re-

gions, such as double cones or lightcones. Indeed, if the underlying theory has a

sufficiently big symmetry group, such as in conformal field theory, the modular

groups of double cone or lightcone algebras and the vacuum state act like specific

subgroups of the conformal group on these algebras, cf. for example [37]. In gen-

eral, however, such a geometric behaviour may not be expected. Even in case of a
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non-interacting massive scalar field the specific properties of the modular groups

for double cones and the vacuum state are not yet known.

Modular theory has also contributed to progress in the structural analysis of

AQFT. It is an important consequence of the Bisognano-Wichmann theorem [3]

that a version of the condition of Haag duality (essential duality) is satisfied in the

vacuum sector. This feature is a vital ingredient in sector analysis. Moreover, with

the help of modular theory, the Murray-von Neumann type was determined of the

weak closures of algebras of observables in various regions. These algebras were

shown to be of type III1 irrespective of the underlying theory [29]. This feature

is a consequence of the sharp boundaries of the regions so that observations in

the interior and exterior are strongly entangled. It results in algebraic properties

which are quite different from those known of the algebra of all bounded oper-

ators on a Hilbert space. In particular, there exists no meaningful trace on the

local algebras. This complicates the implementation of basic physical concepts,

such as entropy. One has either to rely on the existence of algebras, admitting a

trace, that contain a given local algebra and which are themselves contained in a

slightly larger local algebra. This corresponds to sealing off a laboratory from the

outside with walls (split property [25]). Or one may enlarge the local algebras by

proceeding to the crossed product with their modular groups. The resulting von

Neumann algebras are known to admit a (not necessarily unique) trace, they are

of type II. It was recently recognized that these enlargements can be interpreted

as couplings of the local algebras through the modular groups with the reference

systems of observers [22, 27].

Another area of applications of modular theory is the analysis of the degrees of

freedom of field theoretic models. The maps introduced in relation (7.1), based on

Hamiltonians, can be replaced by similar maps involving the modular operators.

It led to the formulation of modular nuclearity conditions which are less restric-

tive [14]. But they still imply the existence of product states and projections in the

vacuum sector, cf. equation (7.4). These observations allowed the construction of

a large family of integrable models within the algebraic framework, which were

not accessible by other constructive means [E4]. Thus the results of an extensive

structural analyses in the general framework of AQFT provided the ground for

these novel constructive methods.
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8 Further topics

There exist key results which, originally, were derived in the Wightman frame-

work of quantum field theory, such as the spin-statistics theorem and the PCT

theorem [44]. Using the Doplicher-Haag-Roberts theory of superselection sectors

and its later developments, these results were established in AQFT in much greater

generality [16, 23, 24]. For example, the Bose-Fermi alternative of statistics was

derived and not simply assumed, such as in the Wightman framework. Moreover,

the spin-statistics theorem was established in massive theories for particles car-

rying a non-localizable charge, which do not fit into the Wightman framework.

In all of these theories, the existence of charge conjugate sectors was established,

along with their finite statistics. In contrast, these features had to be postulated

in the Wightman framework. Finally, in low dimensional spacetimes the appear-

ance of braid group statistics leads to modifications of these results which were

established in AQFT as well [E4, E9].

Point-localized quantum fields do not occur explicitly in the framework of

AQFT. But their existence was established under appropriate conditions [30], re-

stricting, for example, the size of the phase space of the theory [6]. These fields

can be recovered from the local algebras as operator valued distributions which

transform covariantly under Poincaré transformations. Moreover, there exist al-

gebraic relations between the pointlike fields (operator product expansions) that

encode characteristic features of a theory [7].

Such pointlike structures play also a crucial role in AQFT on globally hyper-

bolic spacetimes, where spacetime symmetries are generically absent. So they

cannot be used for the identification of observables in different regions. Instead,

one relies on a more fundamental principle of general covariance [11]. In case

of symmetric spacetimes, one recovers from this principle the automorphic ac-

tion of the symmetries on observables. For general spacetimes it implies that

point fields, such as the energy momentum tensor, can be used in order to iden-

tify the observables in different regions. This fact is, for example, an important

ingredient in the perturbative renormalization of quantum field theories on curved

spacetimes [38, 39].
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[9] Brunetti R, Dütsch M, Fredenhagen K and Rejzner K (2022), C*-algebraic ap-

proach to interacting quantum field theory: inclusion of Fermi fields, Lett. Math.

Phys. 112 101
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