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Abstract. We propose a generalization of the Haag-Kastler axioms for local 
observables to Lorentzian manifolds. The framework is intended to resolve 
ambiguities in the construction of quantum field theories on manifolds. As 
an example we study linear scalar fields for globally hyperbolic manifolds. 

1. Axioms 

Quantum field theories are usually defined on Minkowski space-time, but it 
seems desirable to generalize to arbitrary Lorentzian manifolds. This is so not 
only to accommodate physical systems that require a manifold model for space- 
time, but also as a means of gaining perspective on the general structure of quan- 
tum field theories. General references for quantization on manifolds are De Witt 
[3] and Isham [12]. 

The problem can be posed as finding field operators which satisfy given 
field equations. However, on a general manifold there is no natural choice for 
the Hilbert space on which the operators act, and, in particular, there is no vacuum 
state to be used as a reference point. This suggests formulating the problem in 
terms of the algebraic structure of the field operators, and leaving the specification 
of states as a secondary step. 

One algebraic approach has been developed by Isham [12], Kay [13], and 
Hajicek [t0]. They associate with each Cauchy surface S the C* algebra d s 
generated by the canonical commutation relations (CCR) over functions on S. 
The field equations then determine isomorphisms ~4 s ~ ~¢~ which give the 
dynamics. This type of approach seems quite satisfactory for linear problems, 
but one can anticipate troubles in extending it to nonlinear problems: things 
are probably too singular to allow a definition of the algebras d s. 

In this paper we propose another algebraic approach which generalizes the 
Haag-Kastler algebras of local observables on Minkowski space [8]. There is 
a single C* algebra d together with distinguished subalgebras ~¢(O) corresponding 
to local regions of space-time. All reference to fields to supressed. 
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We now explain the ideas in detail. We consider a Lorentzian manifold (.~, 9) 
consisting of a four-dimensional manifold ,/¢t, and a pseudo-Riemannian metric 
9 of signature ( +  - - - ) .  We assume that ( ~ ,  g) is time-orientable. Then an 
algebra of local observables on (d/i, 9) is defined to be a structure satisfying the 
following five axioms. The first three are essentially the same as those of Haag-  
Kastler. 

Axiom 1 (Nets of local observables). For  each bounded open set (9 ~ J{  there is a 
C* algebra ~((9). If (9 c (9' then d((9) c d((9'). The C* algebra ~ = U d((9) is 
called the algebra of observables. 

Two nets of local observables ~J((9) and ~¢'((9) are said to be isomorphic if 
there is an isomorphism i : ~  ~ ~¢' such that i[d((9)]  = ~¢'((9). In accordance 
with our algebraic point of view we do not distinguish isomorphic nets. If 0~¢ is 
realized as an algebra of operators on a Hilbert space one speaks of a represen- 
tation of the algebra or the net. 

Axiom 2 (Primitivity). d is primitive. 
Primitive means there is a faithful irreducible representation. 

Axiom 3 (First causality). 
If (9 is spacelike separated from (9' then [d((9), d((9 ')]  = 0. 
Spacelike separated means that there is no causal curve joining a point in 

(9 to a point in (9'. A causal curve is a curve whose tangent vectors are either 
timetike or null. 

Axiom 4 (Second causality). If go is causally dependent on (9', then ~'((9) c d((9'). 
The exact meaning of the axiom depends on the definition of causally 

dependent. A strong form would be to say that (9 is causally dependent on (9' 
if every endless causal curve through (9 intersects (9'. Weaker forms may also 
be adequate. 

This axiom embodies the basic dynamical principle that the past determines 
the future (in a certain local sense). If we know a state on d((9') then we know 
it on d((9). 

This axiom is not usually included in the Haag-Kast ler  axioms, although 
it was proposed by Haag and Schroer [9] at an early date. On Minkowski space 
it is perhaps not so important because there is another axiom which says that 
the Poincare transformations define automorphisms of the algebra, and this 
carries dynamical information. In general we do not have Poincare transforma- 
tions. There is however a certain covariance which we now explain. 

Let us shift our point of view slightly. Instead of requiring a net of local obser- 
vables za¢(@) on a particular (J/g,9), we require that there be an at(O) for each 
( J ,  g) in an isometry class. (Recall that an isometry between (J¢/, 9) and ( ~ ,  0) 
is a diffeomorphism ~c :~  ~ ~ such that tc*(0)= g.) isometric space-times are 
physically equivalent and so we want to impose an equivalence on the associated 
algebras. Specifically we want the following functorial property: 

Axiom 5 (Covariance). For any isometry ~ from (iN, g) to ( ~ , 0 )  there is an iso- 
morphism ~ : ~¢ --* s~ such that ~ [s~'((9)] = z~(tc(O)). Furthermore c~ia = id and 
( ~ 1  o ~  = ~ . 

1<2 KI~K~ 
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If we specialize to the case (JCL, 9) = (J2, 0) the axiom says that for any isometry 
on (JCl, 9) there is an automorphism e on 0~¢ such that ~ [~((9)] = d(~c(C)). 

In particular if (JL, g) = Minkowski space, the isometrics are the Poincare trans- 
formations and we recover the usual axiom. 

Having explained the axioms let us turn to a discussion of their status. We 
would like to claim that any quantum system for which a Lorentz manifold model 
of space-time is appropriate can be described by an algebra of observables in 
the above sense. Thus we include linear and nonlinear field theories, massive 
and massless particles, fermions and bosons, etc., etc. This seems to be a reasonable 
speculation. A deeper question is whether such a structure can provide the basis 
for a complete description of any system. This does seem to be true on Minkowski 
space. By extrapolation we might expect that it is true for space-time with special 
structure, e.g. asymptotically flat or stationary. What is missing in the general 
case is some idea of how to associate elements of the algebra with specific operations 
or measurements on the system. Similar difficulties crop up in other quantization 
schemes. 

It would be interesting to further generalize the axioms to a scheme in which 
the metric is not given, but is somehow a dynamical variable incorporated into 
the algebra. This problem is discussed by Dyson [5]. 

2. Linear Scalar Field 

A. The remainder of the paper is devoted to showing how an algebra of local 
observables arises naturally for a particular example---the linear scalar field 
on a globally hyperbolic manifold (//f, 9). The program is as follows. We construct 
a field operator ~b as a solution of the Klein-Gordon equation taking as data a 
representation (0, re) of the canonical commutation relations (CCR) over some 
Cauchy surface S. The field operator q5 defines a net of local observables d(O). 
Although the field depends on the choice of S and (0, 7r), we establish the key 
result that ~((9) does not. Finally, we show that d (C)  satisfies the axioms. 

Our treatment of the linear scalar field follows that of Isham [12]. The main 
difference (aside from a few technical improvements) lies in our interest in the 
local algebras. For further results (and earlier references) on the scalar field see 
Kay [13], Hajicek [10], Wald [18], and Dimock [4]. In another paper we study 
Dirac fields by similar methods. 

B. We begin by defining some function spaces. Let C~(J¢/) be the (real-valued) 
infinitely differentiabte functions on J¢/and C~(~')  those with compact support. 
These are given topologies analogous to the usual topologies for C~°(~"), C~(R"). 
Every u~ C°%~t ') defines a continuous linear functional o n f ~  Co(~ '  ) by (u,  f ) = 
~u]'dV where dV is the volume element defined by the metric g. Correspondingly 
we denote the dual space, the distributions, by [Co(~ ' ) ] '  = C-~(Jg).  The distri- 
butions with compact support are denoted C O oo(.g) and one can make the usual 
identification [C°°(J¢)]'= Co°~(~). (We use the notation of Guillemin and 
Sternberg [7]; one also writes C~ = 9 ,  C ~° = g, C-  oo = ~,, Co 0o = E'.) 

We are interested in the Klein-Gordon equation which has the form 

( [] + mZ)u = O. 
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Here the d'Alembertian [] is given in local coordinates by 

D = wv ,  = l l- "Za f lgl 'J% 

where t gl = l det and 0 is a mass parameter. (Our methods also 
work for any equation of the form [] u + ( a, Vu } + bu = 0 where a is any smooth 
vector field on ~//g and b is any smooth function.) 

As a consequence of the global hyperbolicity there are global fundamental 
solution for [] + m2; see Leray [14], Lichnerowicz [15], Choquet-Bruhat  [2]. 
That is there are unique operators E -+- : C~(.//g) -~ C~(./g) such that 

([2] +m2)E +- = E-+(E] + m 2 ) =  I 

supp (E+ f )  c J+ (suppf)  

where for K co/g, J~(K) is the set of all points in ~g¢ which can be reached from 
K by a future/past directed causal curve. The d'Alembertian is self-adjoint and 
correspondingly we may continuously extend E +- to operators from C o oo(j/) to 
C - ~ ( ~ )  by E ± = (E~-) '. We also define E = E + - E-  and have E' = - E. 

A Cauchy surface for Jg is a spacelike hypersurface S such that any endless 
causal curve intersects S exactly once. We assume that ~ has smooth Cauchy 
surfaces. (Global hyperbolicity implies the existence of C o Cauchy surfaces [6], 
[11], but there is no published proof of the existence of C ® Cauchy surfaces so 
strictly speaking this is an extra assumption.) A Cauchy surface has the property 
that J+-(K)c~JT(S)is compact for any compact set K [11], [16]. 

For given S let Po :C~('/g) ~ C ~ ( S )  be the restriction operator and let 
p~ : C°°(Jg) --, C~(S) be the forward normal derivative. 

Theorem 1. (Cauchy problem). Let S be any Cauchy surface and let u o, u 1 ~Co(S) 
then there exists a unique u e C'°(~/4 ¢) such that ( [] + m2)u = O, P o(u) = u o , p l (u) = u ~ . 
Furthermore, supp u c (UiU ± J± (supp ui)). 

This is the classical existence and uniqueness thorem. Apparently the exis- 
tence has never been proved in this form (i.e., arbitrary globally hyperbolic mani- 
fold, arbitrary Cauchy surface), although Leray [14] constructs solutions 
ueH~o~(J/t ). We include a proof of the theorem as stated in the Appendix (Lemmas 
a.2, A.4). 

The operators Po,Pl have adjoints Po, P'I which map Co°~(S) to Co~(~) .  
Thus EPo and Ep] map C o ®(S) to C-oo(jg). As before we have identifications 
C~(S)cC-°° (S ) ,Co(S)cCo~°(S )  defined by ( u , f ) = S u f d S  where dS is the 
induced Riemannian volume element on S. Thus it makes sense to talk of the 
restriction of these operators to C~(S). 

Corollary 1.1 EPo, Ep' 1 restrict to continuous operators from C~(S) to C~(~g) 
and 

t I 

u = EPoU 1 - Eptu o 

is the solution of'the Cauchy problem with data u o, u 1 

Proof. Let u be the solution with data u o , u I 6C~(S). Then we have the identity 
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for f e C 0 ( J d )  

( u , f  ) = - ( u l , P o E f  > + ( U o , P , E f  ) 

(see Lemma A.1 in the Appendix). This says that the desired identity u = EPoU I -- 
Ep'lu o holds in the sense of distributions. However, specializing to u o = 0 we see 
that gpo " Co(S) - ,  C~(d//) and specializing to u I = 0 gives Ep' 1 • CO(S ) --, C~(J//). 
Thus all terms in the identity are C °° functions and so the identity holds in this 
sense. The continuity follows by using the closed graph theorem. 

CoroLlary 1.2. On CO(S): 

PoEPo = 0 PoEP'l = - I 
t I 

plEPo = I p l E p l  = O. 

Proof  Apply P0, P, to the identity in Corollary 1.1. 

Corollary 1.3. On C~(M//): 

E = E P o P , E -  Ep'lpo E. 

Proof  Insert u ~ = p ~ u, u o = p o u in the identity in Corollary 1.1 to get u = E PoP , u - 
Ep'lPoU for any solution u such that po u, p lu  have compact support. Now take 
u = Ef. (PoE f, p l E f  have compact support since S ~ d -+ (supp f )  is compact.) 

C. Now we turn to the quantum problem. For  any Cauchy surface S we 
consider representations of the CCR over S. These will consist of a complex 
Hilbert space J(F and symmetric operators O(h), re(h), linear in heCO(S),  defined 
on a dense domain in aft, and satisfying 

[0(h), ~(h')] = i (h ,  h ' )  = i~hh'dS. 

The existence of representations is easily established. Let 24°1 be the completion 
= ( h , h  ) ,  let ~ o  = C, Yf of complex valued Co(S  ) with inner product (h, h') - ' = 

n cx3 

® 3f. 1, and let ~." = ( ~  ~4~ be the Fock space. If a(h), a*(h) are the usual creation 
s y m  n = I 

and annihilation operators defined on finite particle vectors in ~ and satisfying 
[a(h), a*(h')] = ( h, h ' ) ,  then 

O(h) = (a*(h) + a(h)) /x /2  

re(h) = i(a*(h) - a(h) ) / \ / 2  

provide a representation of the CCR  over S. We do not attach any special signifi- 
cance to this representation. 

We now mimic the classical Cauchy problem. 

Theorem 2. Let  (0, 7;) be a representation o f  the CCR over a Cauchy surface 
S c J//. Define a field operator in the sense o f  distribution by 

Then ~ solves the Kle in-Gordon equation 

( [ ]  + mZ)¢ = 0 
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and 

[4(f ) ,  0 ( f ' ) ]  = l / i (  f E f t ) .  

Proof. The operator q~(f)is defined for feC~(.///[) by 

dp(f ) = O(p l Ef) - rC(PoEf). 

This makes sense since poEf pIEf~C~(S). The field equation 0(([~ + m 2 ) f ) =  0 
follows from E( [ ]  + m 2) = 0. Finally 

[~b(f), 0 ( f ' ) ]  = - i ( p l E f  PoEf ')  + i ( P o E f  P l E f ' )  

which is 1/i ( f Ef '  ) by Corollary 1.3. 

Corollary 2.1. Let S be another Cauchy surface in .~  and let O, z? be the restrictions 
of ~ to S defined as distributions by 

0 = t~oO = fioePo ~ - PoEP'I 0 

Then (0, r?) provide a representation of the CCR over S. I f  S = S then 0 = O, {c = re. 

Proof The definition says O(h)=O(plEpoh)+... and makes sense since 
piEPo.C o (S) C o (S), etc. For  the commuta tor  we have: 

[0(h), rt(h')] = - i(p~EtYoh, po~Y~h ')  

+ i(PoE~oh, plEfi'~h') 

But Green's identity gives that for solutions u,u', the quantity (p~u, PoU' ) -  
(PoU, Pl u') is independent of S. Thus we may change Po,Pl ~ / )0 , / ) t  above. 
Then by Corollary 1.2 we get i (  h, h ' )  as required. The result for S = S also follows 
by Corollary 1.2. 

D. Next we introduce the algebras. First we pass to the Weyl form of the 
CCR. Formally if 

W(h, h') = exp(i(O(h) - ~(h'))) 
we have (i ) 

W ( h  1 , h l ) W ( h  2 , h'2) = W ( h ~  + h 2 , h 1 + h'2) exp - ~ ( ( h  I , h 2 ) - ( h  2 , h~ ) )  . 

This can be made rigorous for the example we gave. In any case, we now define 
a representation of the CCR over S to be a function W from C2(S) x C~(S) to 
unitary operators on a Hilbert space J f  such that the above identity is satisfied. 
We also require t ~ W(th, th') is strongly continuous. Then by Stone's theorem 
one can define self-adjoint O(h), rc(h') so e i°(n)t = W(th, 0) and e -i~(h')t= W(O, th') 
and one can show that these form a representation of the CCR in the previous 
sense. Thus the new notion generalizes the old. 

Given a representation in the above sense we now define a self-adjoint field 
operator O(f ) , f eC~(J[ ) ,  via Stone's theorem by 

e i4'(f)t = W(tp 1 E f  tPoEf). 
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We define a net of local observables by 

s¢((9) = C* algebra generated by e iCe° = W(plEf PoEf), s u p p f c  (9 

and define 

.4  = U ,.d(o) = d ( v z )  
o 

The algebra d can also be characterized as the C* algebra generated by W(h, h'), 
h, h'eCo(S). Clearly the latter contains the former. For the inclusion the other 
way suppose we are given h, h', let u be the solution with data h, h', and choose 
f so u = E f  (see Lemma A.3). Then W(h, h')= W(plE f PoEf) which gives the 
inclusion. 

Theorem 3. The net d((9) is independent of the representation (Jr, W) of the CCR 
over Co(S), and is independent of the Cauchy surface S. 

Proof For given S we consider two representations (.;4Q W) and ( ~ ,  t~) over 
Co(S) and the associated nets ~d((9), s¢((9). We must show there is an isomorphism 

i : d --, s~7 such that i[d((9)] = s]((9). Different representations of the CCR give 
rise to isomorphic C* algebras, a result due to Manuceau and Slawny (see refer- 
ences in [10], [12] or Simon [17]). Since d ,  s#  are generated by W, W this says 
that there is an i : d --, sesuch that i[W(h, h') 3 = 17V(h, h'). But this entails i[d *~I)] = 
e i4;(I) and hence i[d((9)]  = ~7((9). 

Now consider two Cauchy surfaces S, S. To show that they give rise to iso- 
morphic nets it suffices to find particular representations (~f, W) over Co(S ) 
and ( ~ ,  W) over C~(S) such that the nets are identical. Take any (~/f, W) we define 

= J f  and W as in Corollary 2.1 by 

13/(h, h') = W(plE~doh - PxE~'~h ', PoEl~oh - PoE~'~h'). 

That this is a representation follows as in Corollary 2.1. Then by Corollary 1.3: 

ei$~I) = 17V (fi l E f floE f )  

= W(pIE f PoE f )  
= ei4~(f). 

Therefore i f ( 6 ) =  ~d((P) and the proof is complete. 
Now we come to the main result. 

Theorem 4. For any globally hyperbolic space-time (Jg, g) let ~¢((9) be the net 
of local observables defined above. Then d((9) satisfies the axioms I-5.  

Proof 1. is established. 2. follows since C* algebras generated by the CCR are 
primitive. For 3 note that 

ei4~(f) e i¢ (  f ' )  = ei4~(f') e i ¢ ( f )  e < f ,E f"  > " 

If s u p p f  and supp f '  cannot be joined by a causal curve then ( f  Ef ' }  = 0 and 
so [e i¢(f), e i-~(I')] = 0 which gives the result. 
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For axiom 4 we must say what is meant by "(9 is causally dependent on (9'." 
By this we will mean that there is a Cauchy surface S such that every endless 
causal curve through x~(9 intersects S in (9'. When this is the case we must show 
~4((9) c d((9'). We work in a representation based on S with e ~4'(I) = W(pl  E f  PoEf). 
If s u p p f c  (9, then 

supp(p~Ef) c ( ~ J± (supp f )  r~ S) c (9'. 
_+ 

By Lemma A.3, there exists f '~C~((9')  such that E f =  Ef ' .  Then e ~4'(I) = e ~¢,(f'), 
hence e~(l)ed(@'),  and hence ~¢((9) c ~¢((9'). 

For  axiom 5 we suppose that ~c : ( J ,  g)-~ (M/2, g) and show that we can find 
representations such that sJ = ~ ,  .~((9)= ~0<((9)). This will determine an iso- 
morphism in any other representation. Let (J/f, W) be a representation over 
C~(S) for some Cauchy surface S c J/L Define a representation (W, W) over 
C~(S), S c . ~  by S = ~c(S), N~ = ~g, and 

I?V(h, h') = W(~c*h, ~c~h') 

where ~:o:S ~ S is the induced diffeomorphism. This is easily checked to be a 
representation using (~c~h, ~ * h ' ) =  (h,  h ' ) .  From ~c*~ = []  ~* and the unique- 
ness of the fundamental solutions we conclude ~c*/~ ± = E-+~c *. Using also k~/~i = 
p~:* we have 

e i$(I~ = l?f(fi;Ef, floE f )  

= W(plElc*f, PoE~c*f) 
= ei~(~*f) 

Thus s)((9) = ~/(~-  I((9)) or ~4((9) = s~(~c((9)) as required. The remaining properties 
are straightforward to check. 

Appendix 

In this Appendix we prove the existence and uniqueness theorem for the Cauchy 
problem as stated in Theorem I, and in the process obtain some results used 
elsewhere in the paper. As in the text (J / ,  9) is a globally hyperbolic Lorentzian 
manifold, E ± are fundamental solutions for (D + m2), E =  E + -  E- ,  S is a 
Cauchy surface in .Ad, Po is restriction to S, and p 1 is the forward normal derivative 
on S. The first two Lemmas are standard. 

Lemma A.1. Let u be a C °~ solution of(E] + m2)u = 0 on J¢/and set u o = Po(U), 
u 1 = pl(u). Then for a n y f ~ C ~ ( / £ ) ,  

u fdV = ~(UoPl(Ef) - UlPo(Ef))dS. 

Proof. Green's identity has the form 

~ (u( D + m2)v - v( D + m2)u)dV 

= u-a~-v~ dS 
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where 8/~n is the outward normal derivative on OD. We let u be the solution, 
put v = E+f and take D = S-  - J - ( S ) \ S  so that OD = S and Pl = 8/~n. Since 
J+(suppf)c~J-(S)  is compact  the integrals are well-defined and the identity 
holds. Thus we have 

S uvclv  = ~ ( u o p l ( e + v ) -  Ulpo(e+v) )ds  
S-  S 

Similarly with v = E- f O = S + - J+(S)\S and Pt = - S/On: 

uvaV  = - ~ (Uop l ( e - v )  - U l p o ( e - v )  )ds  
S + S 

Adding these equations gives the result. 

Lemma A.2. (a) (Uniqueness) I f(J3 + m2)u = O, Po(U) = 0, Pl(U) = 0, then u = 0 
(b) (Support) I f  (D + mZ)u = 0 and Po(U), pl(u) have support in N c S then 

supp u a J + (N) w J -  (N) 

Proof (a) By Lemma A.1, 5ufdV = 0 for a l l f a n d  so u = 0. 
(b) If s u p p f c  ~ (J+(N)wJ- (N) )  then there is no causal curve from s u p p f  to 
N. Therefore supp Efc~ N = ~ and by Lemma A.1 j'ufdV = O. 

Lemma A.3. Let u be a solution of (D + mZ)u = 0 and let Po(U), Pl(U) have support 
in a compact subset N of S. Then for any open neighborhood (9 of N there exists 
f eC~(d{) such that supp f c (9 and u = Ef  

Remarks. This is a refined version of a result due to Choque t -Bruha t  [ i ] .  For  
the proof  we use the fact that if (V7 + mZ)u =f,  feC~(J~),  and supp u is compact  
to the past/future then u = E±f [15]. A set A is called compact  to the past/future 
if J~(x)c~A is compact  for all x. Examples: S, compact  K,J+(K) are compact  
to the past. 

Proof We may assume (9 has a compact  closure. Let (9 + = (9 u S  ± and let (9 o = 
(J+(N) u J-(N)).  Then (9-+, 4 °,° form an open covering of Jg,  and we let 4~ °, d~ -+ 

be a partition of unity subordinate to the covering. By Lemma A.2 ~°u = 0 and 
so u = @ +u + @-u. We define 

f =  (D  + m2)~b+u = - ( [ ~  + m 2 ) $  - u  

Then s u p p f a  ( 9 + m ( 9 - =  (9. Fur thermore since supp(@eu) is compact  to the 
past/future we have @ i u = + E +f and hence u = E f  

Lemma A.4. (Existence) For any u o, Ul eCo(S ) there exists ueC~(J/t) such that 
( [~  + m2)u = O, Po(U) = Uo, p t ( u )  = u 1 . 

Proof We begin with a local existence theorem. For  any point peS choose a 
neighborhood with coordinates x" such that xU~)= 0 and S corresponds to 
x ° = 0. Let ~V" be the open lens-shaped region bounded by the hypersurfaces 

x 0 = + ¢ 2  _ ( x ~ ) 2  _ (x2)2 _ ( x 3 ) 2 )  

(XI)  2 -I- (X2) 2 Jr- (X3) 2 ~ e 2 

For  e sufficiently small these boundary  surfaces will be space-like, as well as the 
x ° =  constant surfaces in Y .  Then by using the Canchy-Kowalesk i  theorem 
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and energy estimates (e.g., [1 I] ,  Sect. 7.2) one can show that  for u 0 , u 1 ~ C ~ ( Y  c~ S) 
there exists u ~ C ~ ( Y )  such that  ([2] + m2)u = O, Po(U) = u o, p l (u)  = u 1 . 

Next  we obtain a global solution for local data. That  is for any p ~ S there is 
an open ne ighborhood  N c S ofp  such that  for u o , u t ~ C o ( S  ), supp u o , supp u 1 ~ N, 
there is u~C~(./¢[) so that  ( D  + m2)u = O, Po(U) = u o, p l(u) = u t . To see this take 
a ne ighborhood  Y of  p as above let N = Jg' c~ S, and at first let u be the solution 
in J¢°. N o w  .A r is itself a globally hyperbolic  manifold (with Cauchy  surface N) and 
so has fundamental  solutions E~.  Then by Lemma A.3 we may  write u = E r f f o r  
some f ~ C ~ ( Y ) .  N o w  extend u to ~/~ by regarding f as an element of  C~(J~) 
and defining u = E f  This is an extension since E+-f restricted to X satisfies 
( D  + mZ)u = f  and is compact  to the past/future and hence equals E ~ f  The 
extended u is a solution and has the correct  da ta  on N. Fur thermore  u vanishes 
on S \ N  since supp u ~ J + ( Y ) w  J - ( Y )  which does not  intersect S \ N .  

Finally we take u o, u~ ~C~(S). Let {N~} be a finite open covering of  supp u o u 
supp ul by sets for which global solutions exist, let {qSk} be a part i t ion of  unity 
subordinate  to the covering, and let u k be the solution with data  qSku o, qSku ~ . 
Then  u = ~ u  k is a global solution with da ta  u o, u 1 . 

k 
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