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Abstract: We propose uncertainty relations for the different coordinates of spacetime 
events, motivated by Heisenberg's principle and by Einstein's theory of classical 
gravity. A model of  Quantum Spacetime is then discussed where the commutation 
relations exactly implement our uncertainty relations. 

We outline the definition of free fields and interactions over QST and take the 
first steps to adapting the usual perturbation theory. The quantum nature of the 
underlying spacetime replaces a local interaction by a specific nonlocal effective 
interaction in the ordinary Minkowski space. A detailed study of interacting QFT 
and of the smoothing of  ultraviolet divergences is deferred to a subsequent paper. 

In the classical limit where the Planck length goes to zero, our Quantum Space- 
time reduces to the ordinary Minkowski space times a two component space whose 
components are homeomorphic to the tangent bundle TS 2 of the 2-sphere. The 
relations with Connes' theory of the standard model will be studied elsewhere. 

1. Introduction 

It is generally believed that the picture of spacetime as a manifold M locally mod- 
elled on the flat Minkowski space Mo = IR 4 should break down at very short dis- 
tances of the order of  the Planck length 

= --_ 1.6 x 10 -33 cm.  

Limitations in the possible accuracy of localization of spacetime events should in 
fact be a feature of  a Quantum Theory incorporating gravitation. 

There have been investigations on possible mechanisms leading to such lim- 
itations in the context of  string theory [1,2], in Ashtekar's approach to quan- 
tum gravity [3], and,  in a more formal way, in the context of  Quantum Groups 
[4, 5]. These different approaches have led to different limitations and, more signifi- 
cantly, to different pictures of  spacetime where gravitational effects in the small are 
necessarily strong (spacetime foam [6]). 
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Our proposal differs radically: attempts to localize with extreme precision cause 
gravitational collapse so that spacetime below the Planck scale has no opera- 
tional meaning. We elaborate on this well known remark and are led to spacetime 
uncertainty relations. In our proposal, spacetime has a quantum structure intrinsically 
implying those relations. Thus the impossibility of giving an operational meaning to 
spacetime in the small is incorporated in the mathematical structure of the model. 

Similar models can be found in the work of J. Madore[7], where, however, no 
attempt was made to motivate the algebraic structure by an operational analysis of 
localization. 

We thus propose that spacetime ought to be described as a non-commutative 
manifold, i.e. the commutative algebra cg0(M) of complex continuous functions on 
M vanishing at infinity should be replaced by a non-commutative algebra g, and 
points of M by pure states on g. The aim of this paper is to propose an algebra g 
describing Quantum Spacetime and to look for a formulation of QFT over QST. 

We now formulate some criteria for the choice of 6 ~. We are interested in 
elementary particle physics, that is in describing idealized situations where only 
few colliding particles are present. Therefore, as a first stage of our project, we are 
interested in a non-commutative variant of the flat spacetime M0, deviating from 
M0 only at very short distances, which fulfils the following principles: 

1) The commutation relations in g should be motivated by operationally mean- 
ingful uncertainty relations between the different coordinates of  spacetime 
e ven Is. 

2) The flat spacetime Mo should appear (possibly as a factor) in the large 
scale limit of & 

3) The full Poincar~ group should act as symmetries on & 

Condition 3 is motivated and made possible by 2) and allows us to adopt 
Wigner's description of elementary particles in terms of irreducible representations 
of the Poincar6 group. Parity or time reversal symmetry breaking might be features 
of specific interactions but the quantum spacetime should be, as ordinary spacetime, 
reflection symmetric. Therefore, in 3) the full Poincar6 group is required to yield 
symmetries of the quantum spacetime. 

In Sect. 2 we explore the limitations of localization measurements which are 
due to the possible creation of black holes by concentration of energy. 

We find the uncertainty relations 

AXo(Zlxl + AX2 + Ax3) ~ 22 , 

AxlAX2 + AxzAx3 + Ax3Axl > ;t~ , 

which are implied by those limitations but do not necessarily imply them. In Sect. 3 
we find algebraic relations which imply these uncertainty relations. They have the 
form 

q~ = q~, 

[[qu, q,'], q,] = 0 ,  

[qu, qv][qU,q "] = O, 
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The resulting algebra has a centre generated by the commutators iQuv = [q~, qv]. 
The physical meaning of this centre has still to be understood. It is responsible for 
the fact that in the large scale limit, performed at fixed spectral values of the centre, 
the resulting classical space is M0 x Z, where 

22 = {(O'#v), aav =--av#, r uv= O, (l/8aavr 2 :  1} 

TS 2 • {1 , -1}  . 

In Sect. 4 we define a C*-algebra • to which the operators qu are affiliated, g turns 
out to be isomorphic to the algebra Co(Z, Y )  of continuous functions from Z to 
2(  vanishing at infinity, where ~ is the algebra of compact operators in a fixed 
separable Hilbert space. States on d ~ describe the possible localization of events. 
For optimal localization in a specific Lorentz frame, in the sense that N(Aqu) 2 is 
minimal, the state must be concentrated on spectral values of the centre in a compact 
submanifold X (1) of 22 with Z (1) ~ S 2 • {1, -1} .  

In Sect. 5 we develop calculus on g. In particular we define a spacetime inte- 
gral as a positive Poincar6 invariant trace and integrals over spatial hyperplanes as 
positive weights. The existence of these latter integrals will be crucial for introduc- 
ing an interaction and depends on the fact that the uncertainty relations admit an 
absolutely precise determination of time at the cost of complete uncertainty in at 
least one spatial coordinate. 

In Sect. 6 we take the first steps towards quantum field theory o n  the quantum 
spacetime. We define free fields and show that their commutator at spacelike dis- 
tances decreases like a Gaussian. We give a formal recipe for defining interaction 
Hamiltonians, interacting fields and the penurbative expansion of the S-matrix. This 
expansion could be derived from a specific nonlocal effective interaction on ordinary 
Minkowski space where the nonlocal corrections are at least quadratic in 2e. 

Gauge theories on the quantum spacetime should be formulated in the framework 
of non-commutative geometry [8]. More substantial deviations from theories on 
classical spacetime are to be expected; quantum electrodynamics, for example, will 
be a non-Abelian gauge theory. The occurrence of the two point set { 1, - 1  } in the 
classical limit recalls Connes' theory of the standard model [8, 9]. We hope to take 
up these problems elsewhere. 

The quantum aspects of gravitation might, however, well lead to a more drastic 
deviation from the classical structure of spacetime than is shown in our model, 
which is motivated by semiclassi~al arguments pertaining to classical gravity. 

Some of the structures discussed in this paper have already appeared in the 
literature in different contexts. Thus our commutation relations occur in the theory 
of charged particles in constant electromagnetic fields (see e.g. [10]). A Euclidean 
version of fields on a non-commutative spacetime related to ours was proposed in 
[11]. The Schwinger model on Madore's fuzzy sphere [7] was discussed in [12]. 
For other models of quantum spacetime see e.g. [13]. 

A less technical version of our main results has appeared in [14]. 

2. Spacetime Uncertainties 

We start our discussion by pointing out that combining Heisenberg's uncertainty 
principle with Einstein's theory of classical gravity leads to the conclusion that 
ordinary spacetime loses any operational meaning in the small. 
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Measuring a spacetime coordinate with great accuracy a causes an uncertainty 
in momentum of the order ! (unless otherwise stated, we will use natural units 

a 

1 is transmitted to h = c = G = 1). Neglecting rest masses, an energy of the order 
the system and concentrated at some time in the localization region. The associated 
energy-momentum tensor T~v generates a gravitational field which, in principle, 
should be determined by solving Einstein's equations for the metric t/~, 

1 R R~,, - ~ tluv = 8xT,  v . (2.1) 

The smaller the uncertainties Ax~ in the measurement of coordinates, the stronger 
will be the gravitational field generated by the measurement. When this field 
becomes so strong as to prevent light or other signals from leaving the region 
in question, an operational meaning can no longer be attached to the localization. 

Our task is now to investigate how localization is restricted by requiring that 
no black hole is produced in the course of  measurement. Since pair creation is 
important in processes involving high energy transfer, the framework of quantum 
field theory has to be used. 

Our information on the localization of events in spacetime is obtained by using 
operations which prepare a state localized in a region with sides of lengths Axe, 
that we take as a measure of the uncertainties in the spacetime coordinates of an 
event. We will admit only those states whose associated energy-momentum tensor, 
taken as a source in Einstein's equation, does not generate closed trapped surfaces 
in the sense of Penrose I. 

As a consequence, the Ax u will be subject to some restrictions preventing them 
from being simultaneously arbitrarily small. We may then pose our 

Uneertainty Problem: Find the restrictions on the uncertainties Axo, . . . ,  Ax3 valid 
in all admissible states. 

To formulate our problem precisely, we turn to the free neutral scalar field and 
use the coherent states as a model for a class of states prepared by such operations. 
The corresponding state vectors have the form 

= eiq~(f)Q , (2.2) 

where ~ denotes the vacuum state vector and f a real smooth test function with 
compact support where the state (2.2) is strictly localized [16, 17]. We have to 
choose the function f so that ~b differs significantly from the vacuum in the support 
of  f ,  a region whose extent is characterized by Axe,/~ = 0 . . . . .  3. To this end we 
require the state to be significantly different from its translate through Axe. This 
may be expressed by the condition 

I(~, P ~ ) I  >-- (Ax.) -1 , 

which will be analyzed more thoroughly elsewhere. 
The mean energy-momentum tensor of the state induced by (2.2) is given by 

t~v(x; f )  = (~, : T~v(x) : ~ ) ,  (2.3) 

1 Cf. [15, 8.2]: we are grateful to D. Boccaletti for calling our attention to this reference. 
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where �9 T.r �9 is the normal f o rm of the energy-momentum density of  the field 

&0 0~o , 1 (  &o 0~o ) 
r~,.(x) = ~x,,tx)~Tx,.tx) + ~ m2cp(x) 2 - ~x;(X)~x~(X) 9~' ,  (2.4) 

�9 Tu,.(x) := Tm.(x ) - (f2, Tm,(x)f2 ) . (2.5) 

The mean energy-momentum tensor (2.3) coincides with the energy-momentum 
density associated with a suitable solution @ of  the Klein-Gordon equation, 
(Vq + m2)Of = 0, using the expression (2.4) in classical field theory. Here 

@(x) = / m  f e ~')(k)dQm(k) 
Q~ 

= fAm(X - y ) f ( y ) d 4 y  (2.6) 

(where d~2m is the invariant measure on the positive energy mass m hyperboloid f2, + 
and Am the commutator function for the free scalar field of mass m). By the support 
properties of Am, @ is localized at some time with the same accuracy Axb Ax2, Ax3 
as qs; furthermore, by (2.6), Oj. cannot be a positive energy solution since f has 
compact support. However, @ has the same mean energy 

(@, h~pf) = (~b, H~b), (2.7) 

where h is the one particle Hamiltonian and H the free field Hamiltonian. Thus 
our problem is equivalent to its variant dealing only with wave functions. We will 
not try to solve this problem here; instead we propose as an ansatz the following 
spacetime uncertainty relations in generic units: 

3 
Axo ~ Axj > 2 2 , (2.8) 

j = l  

3 
AxjAxk > 2 2 . (2.9) 

j < k = l  

We will motivate these relations heuristically limiting ourselves to a crude estimate, 
where (2.1) is replaced by the linearized equations, the components of T~,, with 

1 if Axo is very (g, v )+(0 ,  0) are neglected, and the total energy E, where E ~ 

small, is supposed to be distributed with constant density p ( - t )  at negative times 
x0 = - t  over a volume with sides Axl + t, Ax2 + t, Ax3 + t. 

In other words we assume uniform spreading with all speeds not exceeding the 
speed of light and localization around the origin, up to Axl, zlx2, Ax3, at x0 = 0. 

The gravitational potential (p at xu ~ 0 can be evaluated as the retarded potential 

__fp(y,--F)d3~,,j  1 7 1 F2dF (2.10) 
~o ~ r " Axo o r (AXl + r)(Ax2 + r)(dx3 + r) ' 

and we impose the condition that photons of  energy e should not be trapped, i.e. 
e+~cp > 0 or -qo < 1. 

It is easy to compute the leading behaviour of (2.10) in the three regimes: Axl 
Ax2 ~ Ax3; AXl ~ Ax2 >> Ax3; AXl >> Ax2 ~ Ax3. One finds Axo �9 Axl > 1 in the 

Ax 1 first two cases, and Axo �9 Axl > In 7;7x2 in the third. I f  Axl/Ax2 is of the order of 
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unity we are back to the first case, so that Axo �9 Axl > 1 is the absolute limitation, 
1 and we according to (2.8), in the third case too. I f  Axj << Axo we must take E ~ 

find (2.9). 
I f  Axo is very large compared with Axj, j = 1,2, 3, we can take as an extreme 

idealization a static solution and the Schwarzschild and Kerr solutions motivate 
(2.9). For, if  Axl ~ Ax2 ~ Ax3 ~ a, we could take a spherically symmetric solu- 
tion with mass 1, and our condition says that a should be not smaller than the 

Schwarzschild radius ~ ~, i.e. a > 1. 
If, say Axl ~ Ax2 ~ r >> Ax3 ~ a, we may take the axially symmetric Kerr 

solution with mass M ~ 1 and angular momentum L; the limiting case is L / M  ~ M 
and L < M r  [18, Ch. 7] which gives 

a . r > l  

in accordance with (2.9). We might further argue that, in the extreme situation 
considered, the energy density is actually concentrated on a thin ring region of  
radius r and thickness a, so that the requirement expressed by (2.9) that at least 
one space uncertainty is large is not in contradiction with the Kerr solution. 

However  condition (2.9) is actually weaker since it allows Axl ~ a to be arbi- 
trarily small and Ax2 ~ Ax3 ~ r to be of  order one. 

In the next section we discuss covariant commutation relations which do imply 
that the uncertainty relations (2.8) (2.9) hold in each state over the associated alge- 
bra. We interpret these states as describing possible localizations of  measurements. 

The separation of  the spacetime localization from the measurement of  a local 
observable is due to our classical treatment of  the gravitational effects of  localization. 
The present approach ought to be considered as a semiclassical approximation to a 
theory, presently unknown, where gravity and quantum physics are truly unified. 

3. Quantum Conditions on Minkowski Space 

Let A1, A2,. . . ,An be elements of  a complex algebra; their non-commuta t iv i ty  can 
be measured by the quantity 

[A1, . . . ,An]  = ~ g i l . . . i n A i l . . . A i  n 

[' A1 . . . A ,  "~ 

= det [ A 1 . . . A n . )  . 

\ A 1  ...An 

(3.1) 

I f  n = 2, this is just the commutator; if  n --= 3 and for ( j , l , k )  = (1 ,2 ,3)  and cyclic 
permutations we set 

[A j, All = iCk, 

then 
[A1, A2, A3] = i ~ A k C k .  (3.2) 

k 

I f  n = 4, we think of operators q0 . . . . .  q3 describing the coordinates in Quantum 
Spacetime and forming a Lorentz vector and we will use covariant notation. Define 

iQ~,, = [qf,, q~], #, v = O, 1 ,2 ,3 .  (3.3) 
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Antisymmetry o f  ~ then gives 

[qo, ql, q2, q3] = gm'/~Pqlzqvq2qp = - ~ e  ~ ~ Qv~Q;~v , 

so that, setting 

as usual, we get 

! ~f~v 2p ID, 
(*Q)~" = 2 ~'~P 

1 
[q0 . . . . .  q3] = - iQvv(*Q)U" " (3.4) 

I f  we denote by g, n7 the "electric" and "magnetic" components of  Q, respectively, 
i.e. 

Qoj = ej = ( , Q  )lk 

(j, l, k) = (1, 2, 3) or cycl ic ,  

Qlk = mj = (,Q)Oj (3.5) 

the two independent Lorentz invariants which can be constructed with the tensor 
Q~v are given by 

1 bzv n~2 ~+2 
2 Q ~ Q  = - ' (3.6) 

1 
~Qu~,(*Q)V~ = - [ q 0 , . . .  ,q3] = g"  n7 + n7 �9 g .  (3.7) 

These expressions are invariant under Poincar6 transformations 

q--+ A q + a  . I ,  

a E IR 4, A E LT ; (3.8) 

and total reflections q --+ - q ,  but (3.7) is not separately invariant under space or 
time reflections since the sign of  (3.7) changes. Therefore, the natural conditions 
which are Lorentz invariant and symmetric in g and n7 are the following: 

QuvQ I~' = 0 , 

1 
~[q0, ql, q2, q3] 2 = / �9 (3.9) 

From now on, q0, ql, q2, q3 will be always assumed to be selfadjoint operators 
acting on a Hilbert space (or affiliated to a C*-algebra, cf. [19] or Appendix A), 
and the operators - i[qu,  qv] will be assumed to have selfadjoint closures Qua. 

We will now show that the conditions (3.9) do yield the uncertainty relations 
(2.8), (2.9) provided the Qua, are central, i.e. commute 2 with the qu's 

[q;., Qu,,] = 0 i 2, #, v = 0 . . . . .  3 .  

We will call Eq. (3.9) and (3.10) the Quantum Conditions. 

(3.10) 

2 Throughout this paper two selfadjoint operators will be said to commute if they commute 
strongly, i.e. their continuous functions vanishing at infinity (or, equivalently, their spectral reso- 
lutions) commute. 
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For each selfadjoint operator A on X and unit vector x E .Jr ~, we will say that 
the vector state co = co, is in the domain of  A if x E ~ A ,  SO that 

CO(A 2) = (Ax, Ax) < oo . 

The uncertainty Ao~A is defined by (Ao)A) 2= co((A- c o ( A ) - I )  2) = co(A 2) - 
CO(A) 2 and co is said to be definite on A if and only if Ao)A = 0, i.e. x is an eigen- 
vector of  A. The same applies if  A is affiliated to a C*-algebra 92 and co E J ( 9 2 )  
is in the domain of  A (cf. Appendix A). 

3.1 Theorem. Let the four selfadjoint coordinate operators qo,... ,q3 fulfill the 
Quantum Conditions (3.9), (3.10). For each state co in the domain of the [q~, q,,], 
we have 

3 1 
Ao~qo ~ Ao~qj > (3.11) 

j=l = 2 '  

1 
Ao~qjAo)qk > ~ .  (3.12) 

l< j<k<3 

The proof  will follow easily from the following propositions. 

Proposition. Let qo,... ,q3 fulfill (3.9) and co be a state in the domain of the 3.2 
[qu, q~.]'s, which is definite on [qo, ql, q2, q3]. Then 

3 1 3 1 
A~oqo �9 ~ Ao)qj + ~ ~ Ao)ej > ~ , 

j=l  j=l  

3.3 
measure on the state space 5~ with barycentre co E 5P(92), i.e. 

co(A) = f q~(A)dv((p), A E 92. 
.~(A ) 

(3.13) 

1 3 1 
A~qjAo~q~. + ~ ~ Ao~mj >= ~ . (3.14) 

1 < j < k < 3  j=I 

P r o p o s i t i o n .  Let92 be a C*-algebra with unit I and v a (regular) probability 

(3.15) 

For any selfadjoint elements A, B E 92 we have 

Ao)(A) >= f A~o(A)dv(qo), 
.~(gx ) 

(3.16) 

Ao~(A). A~(B) >= f Ae(A)Ae(B)dv(qo). (3.17) 
,~(9~ ) 

Proof of Theorem 3.1. Let the state co be definite on each Q~,.; then co is definite on 
[q0 . . . . .  q3] (cf. (3.4)) and Ao)(ej) = Ao)(mj) = 0, j = 1, 2, 3, so that (3.11), (3.12) 
follow from (3.13), (3.14) of  Proposition 3.2. I f  co is any state in the domain of 
the [q~, q,.]'s, it suffices, by Proposition 3.3 and Appendix A, to write co as the 
barycentre of  a (regular) probability measure carried by states definite on the Q,,.'s. 

Since the Q,v are central, f(Q~.), f E cg0(IR), will lie in the centre of  the 
C*-algebra 92[ generated by f(Q~,.) and g(q,), #, v -- 0, 1, 2, 3, f ,  g E ~0(lR). For 
each state co on 92 in the domain of  the [q1,, q,.]'s, the central decomposition of  co 
[20, 4.8] will provide a (regular) measure carried by factor states, hence definite on 
f(Q,~.) and in the domain of [q~, q~.] by Appendix A. [] 
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Proof of  Proposition 3.2. I f  A, B, C are selfadjoint operators with [A, B ] -  = iC, 
then for each state co in the domain of  [A, B] we have 

co(C 2) = co(C) 2 + (Ao)(C))  2 < (2Ao(A)  �9 Ao,(B))  2 + (A,oC) 2 . (3.18) 

I f  co is as in the statement of  the proposition we have co([q0 . . . . .  q3]) = -t-2 and 
by (3.7), 

1 
Re co(g. r~)= ~co(g. rB + r~. ~ = + 1 ,  

so that ]co(g. rB)] > 1. Since by the Schwarz inequality 

tco(g" rn) l ~ ~ co(e2)l/2co(m~) 1/2 
J 

-~ 1/2 1/2 

we get 
co(g 2) - co(r~ 2) > 1 . 

Since by (3.6), (3.9) co(g 2) = co(r~ 2) we have o0(6 "2) > 1, co(r~ 2) G 1. I f  we re- 
call definitions (3.3), (3.5) and apply (3.18), we get (3.13) and (3.14) using (a + 
b + ' " + c )  2 ==_ a 2 + b 2 + . . . + c  2 for non-negative a , b  . . . . .  c. [] 

Proof of  Proposition 3.3. With X ~ 9.I, X = X*, we have 

Aco(X) 2 = CO((X -- co(X)/ )  2) = f q ) ( ( X  -- CO(X) �9 / )2)dv((f i )  . 

But for each ~ E 5P(9,1) and 2 C ]R we have 

~ ( (X - 2 �9 i )2)  = 6 ( (X  _ ~ (X)  �9 i )2)  + (2 - 6 ( X ) )  2 

> r  - r  �9 O 2 ) ,  
so that we also have 

ZIon(X) 2 ~ fcp((X - qffX) �9 [)2)dv((p) 

= f(A~pX)2dv(q~). (3.19) 

Since v is a probability measure, the constant function equal to 1 is square summable 
with unit L2-norm and by the Schwarz inequality 

f A e X  dv(qo) < ( f ( 3 ~ X )  2 dr(q)))1/2 ~ Ao)X ' 

�9 2 1/2 f & , A .  &Bdv(q , )  _-< (f(A~A)2dv(go)) U2 (f(A~oB) dv(qo)) 

< Ao~A �9 Ao)B, 

where we have used (3.19) repeatedly. [] 

We now want to consider realizations of  (3.9) and (3.10) through operators 
on Hilbert space. As we have already indicated, the q ,  will be supposed to be 
self-adjoint operators such that -i[q,, qv] have self-adjoint closures Quu commuting 
strongly with q;~ for all #, v, 2. We wish, however, to impose a further condition 
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namely that the commutation relations between the qu's can be integrated in Weft 
f o rm:  

eieuq~teifil~q~ ~- e-(i/2)a~tQ~VfiVe i(e+fl)~qu ; 0~, fi C ]R 4 . (3.20) 

Such realizations will be termed regular. 
We shall see in the next section that there is a well defined C*-algebra d o 

whose non-degenerate representations are in one-to-one correspondence with the 
regular realizations, do describes our Quantum Spacetime in the sense that it may 
be thought of as the space of continuous functions on the Quantum Spacetime 
vanishing at infinity. 

The situation is therefore analogous to quantum mechanics where we have a 
C*-algebra whose representations are in one-to-one correspondence with regular 
realizations of the canonical commutation relations. Furthermore, just as in quan- 
tum mechanics, there are other realizations and thus the possibility of  defining 
C*-algebras describing other natural classes of representations and hence other 
Quantum Spacetimes. Taking quantum mechanics as our guide, these possibilities 
will be ignored here. 

An important role will be played by the joint spectrum of the commuting self- 
adjoint operators Qua. By (3.9) it is included in the set S of  all antisymmetric real 
2-tensors a such that 

1 #v , a~va w = 0; ~0-~(*a) = 4-1 (3.21) 

i.e., writing a = (~', n~); ej = aoj, mj = 0-lk, where (j, l, k) is a cyclic permutation 
of (1, 2, 3), such that 

~2 ~2 e = m  ; ( g . ~ ) 2  1. (3.22) 

We have Z = Z+ U S_,  where 

_y+ = {0- = (g, r a ) /g  '2 ~2 
= m , g .  ~ = •  """"'to.za) 

We can introduce the (Lorentz frame dependent) Euclidean norm on Z by 

1 2 1 +2 ~,2 /~2 
110-112 ~--- ~ ~ O-u v = ~ ( e  + / ~ 2 ) =  = 

,u<v 

Then ll0-ll > 1 for each 0- c S and the unit sphere Z (1) of Z is the compact manifold 

z<l)  = {0- ~ ~/110-[l = 1} = {0- = ( <  r~) ~ z /g= • = ~ )  <3 ~o> 

i.e. S(, 1) is homeomorphic to S 2. 
I f  the four selfadjoint operators q0 . . . .  , q3 obey the Quantum Conditions (3.9), 

(3.10) and co is a state in the domain of the Quv's then, by the Spectral Theorem, 
co defines a regular probability measure/~o~ on Z s.t. 

co(f (Q)) = f f(0-)d#o~(0-), f E ego(S) . 
S 

3.4 Proposition. Under the hypothesis of  Theorem 1, we have 

~ . ( A ~ o q ~ )  2 > vSf( l l0 -112  + 1) 1/2 d#oX0-) �9 
Z 
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Proo f  By (3.19) it suffices to prove the above inequality for a state co which is pure 
on the centre. /&o is then a Dirac measure at a point 0 E S and Ico(Q~,,)l = Io~vl. 

t ~I ~ ~-23 t Let q~ = no)(q~) - co(qu) �9 I. For ~'C IR 3 we set f t .  q i=1 aiqi and find the 
commutation relations 

[ q 0 , a ' ` 7 ' ]  = i cT .  g ' . I ,  [c7. q " ' , / ~ . ` 7 ' ] = i ( f f x b  ~). n T . I .  

Now let {if,/~, E} be an orthonormal basis of  ]R 3 with E = b x b ~. 
Then 

~(A~o(q~,)) 2 =co(qlo2 + ( E .  ~,)2 + ( ~ ' .  `7,)2 + ( s  `7,)2) 
,u 

2Ao)(qo)Ao,(a `7') + 2Ao~(/~. " = �9 q ) d o ~ ( c  �9 ` 7 ' )  

=> Ico([q~, '~ �9 '7'])1 + Ico([b �9 q~', ~"  `7'])1 

= I,~. ~'1 + I(~ • ~ -  .~l _-> [,~- (~--  .~)1, 

for 0 E Y,+ respectively. 
The maximum over E is attained for E = - -  g+'~ hence IIg+,~ll, 

S~(A~o(qff)) 2 >= I Ig•  = N/2(llgll2 + 1) = @2(110112 + a) [] 

The last proposition sheds some light on the role of  the manifold S. Very 
accurate measurements of  the q~'s select states co for which #co is essentially con- 
centrated on S (1). In generic units, the unit sphere N fl) becomes the doubled sphere 
of  radius 22 . 

As we will discuss in the next section, if  we consider generic states, the manifold 
S survives in the classical limit 2p ---+ 0. But if we limit ourselves to very well 
localized states, the effect of  Z will be not directly visible in that limit. In the 
next section we will describe explicitly states with optimal localization where the 
quantity Zu(A~q~) 2 actually reaches its minimal possible value. 

We collect here some easy results on the manifold Z which are either obvious 
or proved in Appendix B. 

I. X is a homogeneous space of  the full Lorentz group for the action 

A E L ,  a E S---+ A a A  r = o' E S , 
t vl 

' = A f  A,, (3.24) O'kt v O'/fl vt . 

Under the action (3.24), X+ are LT+-homogeneous spaces; s are connected. 

I f  g = r~, the stabilizer of  a = (Y, rB) in LT+ consists precisely of  boosts along Y 
combined with rotations around g. I f  g = r~ is chosen as the third axis, the stabilizer 
of  o is the image of  the subgroup D of  diagonal matrices under the usual covering 
map SL(2, e ) - -+ Lt+. Hence we have homeomorphisms and isomorphisms of  Lt+ - 
homogenous spaces: 

X+ ~ Z_  ,-~ SL(2, II;)/D . (3.25) 
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II. As a topological space, S+ is homeomorphic to TS 2, the tangent bundle of  
the unit sphere in IR 3. The two-sphere S ~, naturally embedded in TS 2, corresponds 

precisely to 17~), the Euclidean unit sphere of  S+. In particular, S 2 is a deformation 
retract of  Z+. 

III. There are Borel sections for the map of  L~+ onto ~+ �9 A E LT+ --+ AaoA r, ao 
being a given point in 22+; we can choose such a section 

a E Z + - + A ~ E L T + ,  

AoaoA~ = a, a E17+ , (3.26) 

to be continuous on the complement o f  a closed set N with zero quasi-invariant 
measure. We can choose two such sections a -+ A~, a -+ A ' ,  such that N Cl N r = 0, 
each of  which can be written in the form 

Ao = LoRo, a E S+ , (3.27) 

where L~ is a boost, Ro a rotation and a E Z+ ---+ L~ E L~ is continuous. 

Choosing a0 E S+ s.t. a0 = (~, r~), g = n5 = (0, 1, 0), we have 

(3.28) 

where I is the unit 2 x 2 matrix. Thus the symplectic form c~, fi E IR 4 __+ c~a om'fi,, 

can be written as - I ra(& fi), where c~ = (~o + i~2, ~1 + ie3) E 1122. In particular, a0 
and hence any a C I7, induces a non-degenerate symplectic form and is an invertible 
matrix. 

~ I is given by the SchrSdinger operators in A regular realization with QVV = ao . 

i ~ . the plane, Qj = multiplication by sj and Pj = - ~ , j  = 1, 2, in L2(]R 2, d2s) = H,  

by setting 
~0 ~ a0  a0  qo = P1, ql = P2 ; q2 = Q1 ; q3 = Q2 �9 (3.29) 

By yon Neumann's  uniqueness theorem, each regular irreducible realization is 
a (improper) Lorentz  transform q~ o f  qO0, a = d a o A  r =  aoA, for some A E L. 
By reduction theory every regular realization will be a direct integral of  multiples 
o f  q~ 

A Poincark-covariant regular realization can be easily constructed as follows. 
Denoting by ~ C H and A the complex conjugates o f  an element x of  a Hilbert 
space H and of  a linear operator A on H,  i.e. Ax = AY, define 

m 

~ a = q ~  |  o n H |  

P~ = - - ( ( a  l q ~ ) ~ @ l + i |  (3.30) 

It is easily checked that the Pu are generators of  a representation o//a o f  IR 4, aga(a) = 

e iP~a~, which is unitary, strongly continuous and induces translations on ~~ 

~G 
q Z ~ ( a ) - ~ q g ~ ( a ) = q ~ + a ~  �9 I .  (3.31) 
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We can now define, on the Hilbert space • = f e  H | -H dA ~- H | ~r | L2(L), the 
operators 

q~ - f (Aq~)u dA ; (3.32) 
e 

Y l ( a , I ) = - f Y l o ( A - l a ) d A ,  a C  JR4 ; (3.33) 
@ 

~ A) :  ( ~ # ( O , A ) x ) ( A ' ) = x ( A - 1 A ' ) , A , A ' E L ,  x E S ;  (3.34) 

~//(a, A) -- ~(a ,  I)~//(0, A ) .  (3.35) 

It is easily checked that (3.35) defines a unitary strongly continuous representation 
of the full Poincar6 group and (3.32) a regular realization, where 

qZ(a,A)-l q ~ l ( a , A )  = (Aq)~ + a~ �9 I .  (3.36) 

By von Neumann uniqueness and uniqueness of the quasi-invariant regular measure 
class on SL(2, IE)/D, every regular realization, covariant in the sense of (3.36), will 
have to be quasi-equivalent to (3.32). 

We close this section with a remark on our Quantum Conditions (3.9), (3.10). 
We could as well have required that the two invariant combinations of the central 
operators Quv appearing in (3.9) coincide with generic real multiples of the iden- 
tity, say QavQ ~ = 2b �9  (1Quv(,Q)a")2 = (a 2 - b 2 )  �9 I,  with a > Ibl. The above 

discussion would have shown that for each state e), the numbers r /=  o3(Y 2), # = 
e)(n72) fulfill #r/ > a 2 - b e, # - t / =  2b. Hence t/ > a - b, # > a + b, leading as 

a b o v e  to the uncertainty relations 

1 
AqoXAqj > ~ ( a - b ) ,  

1 
ZAqjAqk > ~(a + b) . 

Thus our choice b = 0, a = 1 is the obvious symmetric choice in natural units. 

4. Quantum Spacetime 

In this section we discuss the C*-algebra describing Quantum Spacetime. This part 
of  our discussion is not hard but still rather technical, and readers who are less 
mathematically minded might prefer to limit themselves to the statements of  the 
theorems and then proceed to the discussion of localization and the classical limit 
following Theorem 4.2. 

In view of the discussion towards the end of Sect. 3, we may expect that the 
C*-algebra describing the Quantum Spacetime associated with the regular realiza- 
tions of the Quantum Conditions (3.9), (3.10) (cf. Eq. (3.20)) is related to the 
norm-closed algebra generated by 

f f (c~)e i~q~ d4c~; f C LI(IR 4, d40~), (4.1) 

where qu is the realization (3.32). 
In order to nail down the appropriate algebra, it is more instructive to follow 

von Neumann's approach to uniqueness and first introduce a Banach *-algebra C0 
associated with the regular realizations. 
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Let us define doo as the Banach space of  continuous functions from Z to 
LI(IR 4, d400 vanishing at infinity, equipped with the product, *, and norm: 

( f  x g)(a, ~) = f f ( a ,  c~')g(cr, c~ - o ~ t ) e ( i / z ) ~ l ~ a t ~ v c ~ ' d 4 ~  t , (4.2) 

( f * ) ( a ,  0~) = f ( a , - a ) ,  (4.3) 

Ilfllo,1 = sup IIf(o- ,  �9 )111 �9 (4.4) 
6r 

We define the action ~ of  ~ on do0 by 

"C(a,A)(f)(a, ~) = f ( A - l a A - l r ;  A-lc~)e - i ~  det A ,  (4.5) 

where of  course det A = 4-1. 
The commutative C*-algebra c~(2;) of  bounded continuous functions on 2; is 

embedded in the multiplier algebra of  do0 by 

g e ~(X),  f e doo --+ g f  �9 doo, 

(g f )  (a, ~) = g(a) f (a ,  ~) . (4.6) 

Every non-degenerate representation ~ of  go then determines a non-degenerate rep- 
resentation ff of  ~g(S) s.t. (cf. (4.6)) 

"~(g )rc(f ) = re(g f )  = rc(f )~c(g ) (4.7) 

and n is irreducible only if 3a  E Z s.t. 

5 ( g )  = g ( , r )  �9 I .  ( 4 .8 )  

By von Neumann uniqueness, the irreducible representations ~ fulfilling (4.8) 
for a fixed o- E 2; are all equivalent to one another and to the representation of do0 
determined by q~ 

4 ict~q a f E doo ~ f d  a f (a ,~)e  ~,  (4.9) 

where (cf. (3.29)) 

q ~  Aq ~~ if  a = A a 0 A  r ,  A E L .  (4.10) 

4.1 Theorem. There exists a unique C*-norm on go. The completion do is the 
C*-algebra associated with a trivial continuous field o f  elementary algebras on 
X, i.e. it is isomorphic to Cgo(2;,X), where 2/{" is the C*-algebra of  all compact 
operators on a f ixed separable infinite dimensional Hilbert space. 

Proof The representations (4.9), (4.10), for a C Z, form a separating family, hence 
g0 admits a C*-noma. Let II I] denote the maximal C*-norm and g the associated 
completion. A non-zero representation 7t of  d o is irreducible iff ~[doo is irreducible, 
and hence iff 7r i do0 is unitarily equivalent to the representation given by (4.9), (4.10) 
for some a E Z. 

Therefore, for each a E X there is an irreducible representation ~z~ of  do satisfying 
(4.8) which is unique up to equivalence and we have 

rc~(do) = . Y f ( ~ . ~ ) ,  a E Z .  (4.11) 
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I f  we embed doo into the Banach , -algebra ~o o f  bounded continuous functions from 
27 to LI(]R 4) with product, *, and norm given by (4.2), (4.3), (4.4), then clearly 
do0 C g0 C M(doo), the multiplier algebra of  do0. The maximal C*-norm II " II on g0 
induces a C*-norm, still denoted by II �9 II, on & .  I f  ~ is the completion of  ~0 in 
that norm, we have 

g c ~ C M(do) (4.12) 

and, for each a E 27, xG(do) = 7co(ok) = ~ ( - J { ~ ) .  
We will show that the bundle {zr~(g); a E Z} equipped with the continuous 

fields { { ~ ( A )  : a E Z},A E g}  is a trivial continuousfieId of  elementary algebras. 
d o is then the associated C*-algebra, i.e. the C*-algebra of  continuous fields van- 
ishing at infinity, and is isomorphic to cg0(27, J r ) .  

To this end it suffices to show that our bundle is locally trivial and that there 
is a continuous field of  one-dimensional projections (cf. [21, ch. 10,7.6,7.15, 8.4]). 

We therefore choose the representations ~o, a E Z in an appropriate way. For 
each a E 2;, let f 0 ( a ,  �9 ) E L 1 be the von Neumann element in the fibre of  do0 at 
a corresponding to the selfadjoint projection on the ground state of  the harmonic 
oscillator. Namely,  if  a E Z ~ A~ E L is a section as in Sect. 3, III (cf. eq. (3.29) 
and II, Appendix B), we define f0  by 

1 ~ ,c~ co i N  4 f o ( ~ , e ) = - - e  ~ . . . .  (4.13) (27c)4 , o- C 27, ~ E , 

(~, ~)~ = (A~-lc~, A~-I~) = (L2a~, L21c~), o- E X, c~ E IR 4 , (4.14) 

where (c~, e)  = ~ = 0  c~ and we used the specific form o f  our section Ao = L~R~,, 
where Ro is a rotation thus leaving the Euclidean scalar product invariant. 

Since the Lorentz group acts continuously on LI( IR4) :  f E LI(IR 4) ~ f L :  
f L ( e )  = f ( L - l e ) ,  and a E 27 --+ Lo is continuous (cf. Appendix B), a ---+ f0 ( a ,  �9 ) 
E L 1 is continuous, where f0 ( a ,  �9 ) =  fo(a0,  �9 )L~. 

Now ~zo(f0) is a selfadjoint projection of  rank 1 [22], so that {xo(f0) ;  a E 27} 
is a continuous field of  rank one projections. 

Furthermore the following relation holds for each a E N: 

( f o x  f x f o ) ( a ,  �9 ) = co~(f) fo(a,  �9 ), f E ~ 0 ,  (4.15) 

and defines a state c% on ~. From now on let (rc~, ~ ,  ~ )  be the GNS construction 
for coo. We have only to show that our continuous field is locally trivial. 

Let A~, A2 be two sections as in III, Sect. 3, continuous on Z1,Z2 resp. where 
271,Z2 is an open covering of  2; (cf. Appendix B). Define an isomorphism Pi of  
c~o(Zi, La) regarded as the tensor product of  Cgo(Zi) and the fibre of  do0 at a o  
(cf. (4.2)) onto cffo(Zi, L 1) regarded as a subalgebra of  C by 

Pi ( f )  (a, ~) = f(o-, A ~ l a )  ; (4.16) 

one checks that Pi is a *-isomorphism defining a trivialization of  our field on Z~. [] 

Remark. The triviality of  our continuous field would follow directly if  we could 
define a map, continuous in the appropriate sense, assigning to each a E 2; a reg- 

~G 
ular solution ~ s.t. [q~, c~] = ia,~ �9 I. We might tentatively define ~ as linear 
combinations of  the fixed choice q~O of  Eq. (3.29) but this approach fails, because 
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the bundle A E L ~ O-A E 27 is non-trivial and the symplectic group is not simply 
connected. However,  we have the further possibility of  deforming qO0 to Uq~OU -1, 
where U is an element of  the unitary group of  H using the fact that this group is 
contractible (cf. [21, Chap. 10]). 

It follows from the proof  of  Theorem 4.1 that each C*-seminorm on d o has the 
form 

I/flls = sup II~(f) l l ,  
aCS 

for some closed subset S of  S. Since s is a homogeneous space, the unique 
C*-norm is also the only non-zero z-invariant C*-seminorm, and r extends to a 
strongly continuous action, still denoted by r, o f  the full Poincar6 group by auto- 
morphisms of  do. 

The quasiequivalence classes of  representations of  do are labelled by the regular 
measure classes on S. A covariant representation ~z of  d o obviously yields a covariant 
representation ~ of  ~0 (S)  and is hence associated with a quasi-invariant regular 
measure on S. Since there is only one invariant measure class, it follows that 
there is only one quasiequivalence class of  representations ~c of do s.t. (re, ql) is a 
covariant representation of  (do, z) for some representation ~// o f  the full Poincar6 
group. 

The C*-algebra do of  Theorem 4.1 does indeed describe the Quantum Spacetime 
associated with the class of  regular solutions of  the Quantum Conditions (3.9), 
(3.10), in the sense of  the previous section; namely: 

4.2 Theorem. For each f l  C ego(S) and f2 r let f l  | f2 E doO C do be the 
function ~ E S ~ f l ( a ) f 2  E LI(]R4). We can define selfadjoint operators q~, Q~, 
affiliated to ~ with support of definition 1(Appendix A ), by setting, for each non- 
degenerate representation ~ of ~, 

~z(fl | f 2 )  = faOr(Q))ff2(cOe i~(q~) d 4~ , 

f l  E C~o(X), f 2  �9 La(jR4) �9 (4.17) 

These operators obey the Quantum Conditions since 

[q~, qu]- = iQ~,, , 

the Q~ commute and joint spectrum of  {Q~v, 14 v = 0 . . . . .  j }  = S (cf  IV, Appen- 
dix A ). 

Moreover, for each element (a, A) of  the full Poincark group, we have 

r~la)(qu) = (Aq + a . I)u , (4.18) 

where the automorphisms of ~ act on selfadjoint operators affiliated to ~ as 
described in Appendix A IlL 

We will refrain from spelling out the easy proof  of  this theorem and limit our- 
selves to the remark that, by the relations defining q~ and Quv, if  two representations 
7~1, 7r 2 of  ~ fulfill ~l(q~) = ~2(qg), then ~Zl(Q~v) = ~z2(Quv), and ~1, ~2 agree on 
a total subset of  go, hence ~zi = ~2 on g. 
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In view of Theorem 4.1 we can rewrite Eq. (4.17) as an identity in N involving 
the selfadjoint operators qu, Qz, affiliated to N: 

f l x f 2  = f l ( Q ) f  f 2(cOe i~'d' d4~. (4.19) 

We next discuss briefly the physical meaning of the state space 5P(N). We 
interpret each state co E 5P(N) as specifying the localization of events. Positivity 
of co and the commutation relations prevent absolute precision in the localization, 
but there are states co having optimal localization properties compatible with 
Proposition 3.4. The associated measure #o, on Z will be concentrated on the 
unit sphere Z d), i.e. on the base S 2 x  {• of TS2• {4-l} ~ X .  The associ- 
ated operators q~,a E S (1), will be obtained from the solution (3.29), associated 

(0 o') to a0 " a0 ~v = I , by an (improper) rotation. 

As is well known from elementary Quantum Mechanics, the minimum of the 
quantity (cf. (3.29)) 

X~(Aq~) 2 = (AQ1) 2 + (AP1) 2 + (AQ2) 2 + (AP2) 2 

is actually 2, and is attained on states which are translates of the ground state of 
the Hamiltonian H of the harmonic oscillator in 2 dimensions, 

H = l (p~  + 02 + p22 4- Q22) = 1Z~(q~)2 
2 

Therefore, we can parametrize the states on E with optimal localization by a vector x 
in Minkowski space and a measure # on Z carried by Z (1) and define the associated 
state co by its restriction to #0: 

�9 x/~ 1 2 
co(f) = f d40~ d # ( a ) f ( a ,  cQe'~" --z2 ~ ~ , 

f E (go (Z, LI(IR4)) = if0, (4.20) 

so that co is specified by the values of its normal extension o5 to the multiplier 
algebra through 

�9 ,t l 2 

(5( f (Q)e i~q~) = e ~x 2z~ , , f f ( a )d# (a ) ,  cr E ]R 4, f E ~ ( Z ) .  (4.21) 
We close this section with a remark on the classical limit )op -+ O. 
In generic units, the twisting factor in the product (4.2) of ~0 takes the form 

e ~ ;'~c~'~" , (4.22) 

so that, as Zp -+ 0, our algebra N deforms to 

(g0(lR 4) @ (g0(z~) = (~o(]R 4) @ (g({zJz1}) @ ~ 0 ( ~ + ) ,  

that is our non-commutative space deforms to the (commutative) space 

]R 4 x { - t -1 }  x Z +  . 

The factor (4.22) corresponds to writing the Quantum Conditions on qu, in generic 
units, in the form 

[q~, q,] = i22 Q~v, 

0u,(c r) = auv, a C Z ,  (4.23) 

where the Qu,' defined this way are selfadjoint operators affiliated to (go(Z). 
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Equation (4.23) implies that the large dilation limit and the classical limit 
coincide. I f  we were prepared to violate this condition we could write 

~ [ql . . . .  ,q3] 2 = 2~ �9 I, Q~vQ ~ = 0 

in place of  (4.23) and the 2• -~ 0 limit would give a dilation covariant Quantum 
Spacetime, defined by 

[q~, qv] = i ~ v ,  

~ ( a )  = o-~, a E 270. 

Z0 is the set of  all real antisymmetric 2-tensors such that 

a~,,a ~ = a ~ ( * a )  ~" = O . 

Now ~0 is connected and is a single orbit under LT+ of  any a E Zo; for each 

a E Z0, a = (~, rB) with y2 = ~ 2 ,  g,. r~ = 0. For each )~ > 0, an appropriate boost 
along 6' x t~ will change a = (6, r~) to 2a. The symplectic form defined by a c No 

is now degenerate, a - - - ( ~ - 0 1 ) @ ( ~  ~ )  . 

5. Calculus on the Quantum Spacetime 

Let ~ denote, as before, the C*-algebra of  continuous bounded functions from 
Z to Y ,  and Z c M ( ~ )  the Abelian C*-algebra of  bounded complex continuous 
functions on Z. 

With f E LI(IR 4) let )~ = @ f  - 9 and f = ~ 9  = 0 denote the Fourier trans- 
form and its inverse. 

For each f E ~ L I ( I R  4) we can define the function f ( q )  of  the quantum coor- 
dinates qu as an element of  ~ by 

f ( q )  = f f~(o~)eiq~ d4~, f E yLI(IR4). (5.1) 

Spacetime translations act as automorphisms za, a E IR 4, such that (cf. Sect. 3, 4) 

~ a ( f ( q ) ) =  f ( q - a "  I) ,  a E I R  4 .  (5.2) 

We can now define spacetime derivatives as in Minkowski space as minus the 
infinitesimal generator of  translations, i.e. 

8 
8~ f (q )  =- ~a f ( q  + a �9 I) l ,=o �9 (5.3) 

I f  we take the product of  n operators f l ( q ) , . . . , f n ( q )  defined as in (5.1), we get 
another function of  q which on the one side is distinct from the pointwise product 
f a . . .  f n  evaluated on q and on the other is no longer II~-valued but Z-valued in 
general. Both facts are apparent from the explicit formula which is an immediate 
consequence of  (5.1): 

f l (q ) . . ,  f n ( q )  = (re1 x . . .  • f~n)A(q) , (5.4) 
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where the twisted convolution x depends on Q~: 

(h x h')(e) = f h(cg)h'(~ - c~')ei/2~Q~'d4c~ , 

~Qc~ ~ =_ ~ g  c~ ; h,h ~ E LI(IR 4 ) ,  

so that 

( f l  X . . .  X fn)(k)  =fd4k~.. .  d 4 k n 6 ( 4 ) ( k  - z~kj), ei/2zJ<'kJ Qk' 

• r r 
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(5.5) 

f E L 1 n ~ L  1 "--+ f f ( x )  d4x = f ( O ) ,  

f E L' N ~ L  1 ---+ f f ( t ,Z )  d3x = feit~~ 6) dk0. 
xo=I 

Define the Z-valued trace Tr on o ~ by 

(Tr(X)) (a)  = t rX(a)  , a E Z ,  (5.9) 

where tr is the usual trace on L ~ ( N ( ~ ) )  C S(~,~).  
If  f C LI(IR 4, Z)N yLI( IR 4, Z) the formal analogue of (5.7), (5.8) can be 

defined by 

f d 4 q f ( q )  - f f ( x ) d 4 x  = f ( 0 )  = T r f ( q ) ,  (5.10) 

=-- re ik~ 21k O) dko f f ( q ) d 3 q  j j~. o, 
qo=t 

= lim Tr ( fm(q )* f (q ) fm(q ) ) .  (5.11) 

Note that (5.10), (5.11) are consistent since 

f a t  f f ( q ) d 3 q =  f f ( q ) d 4 q .  
qo =t 

Positivity can be established either directly, using the first line of (5.11) as a defi- 
nition and (5.5) to show that 

f f ( q ) * f ( q ) d 3 q  > O, 
q o  = t  

m 

where of course f (q )*  = f ( q )  as a consequence of the definition (5.1); or else by 
showing that the second equality in (5.11) does hold for an appropriate sequence 
fm. To this end it suffices to choose real functions fm such that f2  m approximates 
the constant function one on space times the Dirac measure at time t. Then, using 

(5.7) 

(5.8) 

In order to develop Quantum Field Theory on the Quantum Spacetime and to apply 
the conventional perturbation methods, it will be important to define the quantum 
analogues of the positive linear functional on L 1 (IR 4) n J~L 1 (IR 4) given by the total 
integral and the integral over space at a fixed time t: 

(5.6) 
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(5.6) for n = 3, we get 

T r f , , ( q ) * f ( q ) f m ( q )  = T r f m ( q ) f m ( q ) f ( q )  = (a>m • aTm x f ) ( 0 )  

= fd4kld4k2d4k3b(4)(Zkj)  �9 ei/2zj<~kyQk@m(k a) ) rm(k2) f (k  3) 

= fd4k l  d4k2e(~/2)k~ Qk2 fern(k1 )fern(k2 ) f f ( _ ( k ,  + k2 ) ) ,  

(5.12) 

where y>,, �9 f,~ approximates 6(3)(/7) �9 e -ikot, so that e(i/2)k~Qk2 can be replaced by 

I in the limit, since Q00 = 0, and the expression (5.12) approximates fdk0f(k0, (~) 
e -&t,  as desired. The positivity of the weight (5.11) can be interpreted in the 
light of our spacetime uncertainties which must hold for any posit ive functional 
and are compatible with absolute precision in the measurement of time together 
with complete lack of knowledge of the space coordinates. On the contrary, the 
functional f ( q )  --+ f ( x ) ,  x E IR 4, for instance, is not positive on ~. 

In order to obtain a ~-valued functional we must integrate over Z too. If 
the result is to agree with the classical definition for functions taking values in 
C �9 I C Z, we must use a normalized state on Z. Unfortunately there is no obvious 
Lorentz invariant choice since Lt+ is not amenable. Motivated by our discussion of 
localization, we will choose the state defined by integration over the unit sphere 
S O) with the normalized Lebesgue measure da.  Of course the result will be rotation 
but not Lorentz invariant. 

We first analyze the Z-valued weight fqo=td3q in more detail. In fact, in order 

be able to define an interaction Hamiltonian we will need expressions like 

f f l ( q ) . . ,  f n ( q )  d3q - (5.13) 
q0 =t 

Combining (5.6) with (5.11) we see that (5.13) is given by 

f ~n(Xl . . . . .  x,,; t ) f  l(Xl ) . . .  fn (Xn)  d4xl ... d4xn , (5.14) 

where the Z-valued kernel ~n is given by 

~n(Xl . . . . .  xn; t)  = f dkod4 kl . . . d4 kne-is eik~ a(1)( ko - Zkio )6 (3) 

X (~g)e( i /2)xJ  <lkjQk! . (5.1 5 )  

The explicit expressions are (of. Appendix C): 

~ 2 n + l ( X l , . . .  ,X2n+I ; t)  =%--4n e 2iXj<l<n(x2j-x2j-a )Q-l(x21+l --x21) 

2n+l 
x 6 ( ~  ( -1)J(x  ~ - t ) ) ,  

j = l  

and 

~2n+2(Xl  . . . . .  X2n+l ; t) = 7c -4n  l ( - t ) ] ( - t )  

\j=l//n+l 2Q(~/' ) )  �9 e2i2j<l<n(x2j_x2 j 1)o- l (x21+l_X21)~5(4) /~(X2j_  X 2 j _ I ) _  1 (~ . 
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The kernel ~n describes the non-locality introduced by the quantum nature 
of  spacetime as a deviation of  (5.13) from the classical expression f c q ( ~  t ) . . .  
f n ( ~  t)d3x. We limit ourselves to the explicit expressions for n -- 2, 3, which will 
be of  particular importance in the next section. For n = 2 we get 

f fl(q)f~(q)d3q = (27r)-1ffl(x)f2(x + Q(tl, f))e-i~t-X~ (5.16) 
qo=t 

Note that integrating over t gives 

fdt f f l(q)fz(q) d3q -- f f l (q)f2(q) d3q 
qo=t 

= ffa(x)f2(x) d4x, 

so that there is no nonlocal effect in the spacetime integral when n = 2. 
The nonlocal effects also disappear from the space integral at fixed time if we 

restrict f l , f 2  to be solutions of  the Klein-Gordon equation ([] + mZ)f = 0 and 
evaluate the usual scalar product 

+--+ 

(f ,  9) =~ f f (x)  ~0 9(x) d 3x 
Xo=t 

Indeed we have for any such f and g and for each t, 

+--+ 

f f(q)~og(q)d3q = (f ,  g) �9 I .  (5.17) 
qo=t 

To prove (5.17) it suffices to note that, by (5.16), the 1.h.s. can be written as 

+--, 

(2n)-l/Z f dxo dqe-i~(t-x~ f d3xf(x) 0o 9,(x) , (5.18) 

where gn(x)=-g(x+ Q(tl, O)) is again a solution of  the Klein-Gordon equation. 
Therefore the fd3x does not depend on x0 and integrating over x0 gives the Dirac 
measure in the variable r/. Integrating over r/ replaces 97 by g0 = g and (5.17) 
equals ( f ,  g) �9 I as desired. 

The calculation for n -- 3 gives 

( 1 )  4 
~ 3 ( X l , X 2 , X 3 ;  l )  ---- ~ 6(t -- X 3 0  - -  ( X l 0  - -  x 2 0 ) ) e  2i(x2-xl )o I ( x 3 - x 2 )  , (5.19) 

so that 

4 

qo=t 
f fI(x + a)fz(x + b)f3(x) 

xo =t +( b -a  ) 0 

X e 2iaQ l b d 3 x  . (5.20) 
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Thus the non-local effects are now visible in the full spacetime integral, too, as we 
see by integrating (5.20) over t: 

f f](q) f2(q)f3(q)  d4q = 
4 

( 1 )  fd4ad4bd4xfl(x+a)f2(x+b)f3(x)e2iaQ-lb. (5.21) 

It is instructive to write (5.20) in 9eneric units. To this end we must replace a~ 

by 2pau, b ~ by )~pb~ and Q - ]  by 2~2K, where a~,bu and K : a E s = 
((a~,,)u#=0,...,3)-I are dimensionless. 

We get 

f f l (q)fz(q)f3(q)d3q = 
qo=t 

~fd4ad4b f f](x + )cpa)fz(x + 2pb)f3(x) (5.22) e2i(a,Kb)d3x . i 

xo=t+2p(b-a)o 

Integrating over the t variable and setting 

we get 

fi = 22~]Kb; b = 2~11Qfi, 

Note that, by the Lebesgue Dominated Convergence Theorem (recall that f i  C L ] N 
~-L 1 ), the limit of  the last expression as )~p ~ 0 is 

1 
(2~z)2 f d4fld4xj'](fi)f 2(x)f 3(x)ei[~x = f d4xf ](x)f 2(x)f 3(x) 

as expected. The correct 2p ---+ 0 limit is also evident in (5.22) or more generally 
in (5.15). 

Note that in (5.22) the non-local corrections to the classical formula are at least 
quadratic in 2t,: the linear term vanishes since 

f a~e2i(a~Jb)d4 ad4b = - f b~e2i(a,Kb)d4 ad4 b 

-- (2rc)4 f a~6(4)( a )d4 a = 0 
24 

This is a general feature: for each n, 2p appears in ~n only through Q (cf. (5.15)) 
and, in generic units, 

Qua(a) = 22au~.. 

Therefore the lowest order corrections to QFT on the usual Minkowski space 
will be at least quadratic in 2p. Linear terms in 2p might appear only if we introduce 
9ravitational interactions explicitly in the theory. 
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Finally we discuss the C-valued weight analogous to the classical space integral 
at fixed time, defined by 

f da f f1(q). . . f ,(q)d3q. (5.23) 
S(1) qo=t 

This expression is easily obtained from (5.14), (5.13) evaluating the state fx(l~da 
over Z. A similar comment applies to the explicit formula (5.22) for n = 3. Note 
that, for cr E 2~0), we have K(a)  = - ~ .  For this holds when a = a0,(ag") = s = 

0 - I )  and X (I) is orbit under the rotation A standard 
N 

a single improper group. 
I O J  

computation gives 

~(a,b) = f d6e -2ia€200 
Z(1) 

1 (sin +(a,b) sin _(a,b)) 
-- 2 \ 7+(a,b) + y_(a,b) J 

(5.24) 

?• b) = 2[]aob- bod+ d x 51[, (5.25) 

Thus replacing the exponential in (5.22) by 6(a,b) we get the desired explicit 
expression for (5.23) in the case n = 3. 

6. Towards Quantum Field Theory on the Quantum Spaeetime 

In this section we will lay down our basic philosophy and take the first steps towards 
QFT on QST. A more thorough analysis will be deferred to a subsequent paper. 

As required from the outset, the Poincar6 group acts as a symmetry group on our 
QST (cf. Sect. 3 and 4). This fact allows us to retain Wigner's notion of elementary 
particles as being described by irreducible representations of the covering group of 
the Poincar6 group. 

In accordance with one of our principles, the large scale limit of our QST 
agrees with its classical limit and yields the classical Minkowski space times an 
unobserved ghost manifold. This asymptotic behaviour is expected to allow one to 
describe causality for QFT over QST as an asymptotic property corresponding to 
the locality principle [17] in the large scale limit. 

The usual construction of asymptotic scattering states, which also involves a 
large scale limit, should likewise carry over. 

When attempting a perturbative study of the S-matrix for QFT over QST, the 
first steps are to define free fields and interaction Hamiltonians. 

Starting from Wigner's definition of particles, the usual Fock space construction 
yields a free field associated with an irreducible representation of the covering group 
of the Poincar6 group. 

There is no difficulty in evaluating this field on the QST, at least formally, 
as a function with values in the algebra spanned by the creation and destruction 
operators. For simplicity we consider a neutral scalar free field ~b(x). Evaluating on 
q~ according to the rule (5.1) gives 

1 f ( e  iqak~ ~ a(]c) + e -iq#k# @ a(]~)* )d~m+(]~) (6.1) r  (2~)3/2 
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where dQ+(/~) -- d3k is the usual invariant measure over the positive energy 

hyperboloid of  mass m: 

= = m 2, k0 > 0 } .  

In order to give a precise mathematical meaning to the formal expression (6.1) we 
may think of a quantum field over QST acting on a Hilbert space ~ as a linear 
map, continuous in the appropriate topology, assigning to test functions f linear 
operators affiliated to the C*-tensor product g | ~ ( . J f )  and formally denoted by 

f -+ f(~(q + a I ) f ( a )  d4a. 

It would be possible, and perhaps even natural, to define a different notion of  
free field over QST, by letting ~b depend of q and o. E Z. 

This would amount to choosing the creation and annihilation operators a in the 
CCR algebra over LZ(]R 3 • z~), where Z is equipped with the Lorentz invariant 
measure do- induced by a Haar measure on L. Thus 

f f (o.)  do. =- f f(AO.oA r)  d A ,  
Z L 

where o.0 is a reference point in Z. This approach would be closer in spirit to 
quantizing wave functions over QST and will be pursued elsewhere. 

As a first simpler choice we will ignore here the possible o.-dependence of free 
fields. 

From the expression (6.1) for our free field over QST and from the definition 
(5.3) of derivatives, it is clear that the Klein-Gordon equation holds 

([B + m2)q~(q) = 0 .  (6.2) 

Let L ---+ ~ (L)  be the unitary representation of the Poincar6 group over J f  defined 
by the Fock construction and aL = A d ~ ( L )  the induced action on linear operators 
acting on J r .  The relativistic covariance of our free field takes the form 

vL | ~L(q~(q)) = ~b(q), (6.3) 

as a consequence of (4.19) and (6.1). In order to define "local observables" in this 
model, we will consider states co over the C*-algebra E of QST as the analogues 
of test functions defining localization data in spacetime. Pure states (with good 
localization properties) should play a role analogous to points in classical space. 

The free field defines a map from states co E 5P(g) to operators on ~tf by 

d?(co) =_ (co | id,~b(q)) , co E 5P(E). (6.4) 

Introducing the test function ~b~ associated to co E 5~(C) by 

--ikl~x I~ ikl~q~ d4k 
O~(x) = f e  c o ( e  ) ( ~ ) 4  ' (6.5) 

we can write the field operator q~ evaluated at co E 5~(s~) as the usual free field 
smeared out with ~/o): 

4(co) = ((~, ~Po~) = f ~(x)~bo~(x)d 4x . (6.6) 



Quantum Structure of Spacetime at the Planck Scale and Quantum Fields 211 

Relations (6.5), (6.6) allow us to explore the locality properties of the free field 
over QST. The commutator of two "values" (6.4) of  the field takes the form 

[4(co), 4)(o)')] = ifA(x - y)Oo~(x)Oo),(y) d4x d4y.  (6.7) 

I f  we specialize co, co/ to translates of  a given pure state with optimal localization 
of the form (4.20), say co = co,,co/= cob, we can compute the commutator (6.7) 
and study its asymptotic properties. In this case, one easily sees that ~o, takes the 
form 

OOoc(X) = (2u)-2e-�89 . (6.8) 

The computation for the case m = 0 can be carried out explicitly and exhibits those 
aspects of  causality which are essential in the massive case, too. 

We get, in generic units, 

Er q~(cob)] = 

�9 / 
4~11d-511 ~e P - 

e-~(lld-Sll+(a-b)o)2 ) 
I .  (6.9) 

There are two important features of the expression (6.9). In spacelike directions it 
falls off like a Gaussian, hence faster than an exponential. I f  a, b are kept fixed 
and we look at the limit lop -+ O, the expression (6.9) converges in the sense of  
distributions to the usual commutator function of the massless free field, as expected. 

We next discuss interaction Hamiltonians, briefly. It is important to note before- 
hand that the free Hamiltonian of a scalar free field of  mass m over QST can be 
written as the space integral of a "quantum density" using the calculus of Sect. 5, 

H =  f Yf(q)d3q. (6.10) 
qo=t 

To this end, note that the Hamiltonian of the ordinary neutral scalar free field can 
be written as 

H = f dax �9 ~ (x) 2 + (~q~(x))  2 -[- m2~(x)  2 " 
xo=t 

- 2 f d3x" (X) 2 ~2(~ 
xo=, ~ ( x ) ~ ( x )  . ,  

where the double dots indicate Wick ordering. Here the Klein Gordon equation and 
integration by parts have been used. The relation (5.17), applied to the last integral, 
shows that (6.10) holds. 

Consider now a more than bilinear interaction Hamiltonian density 

H i ( x )  = ;~ : r  : ,  (6.11) 

where 01,. . . ,  ~kn are free field multiplets and summation over spin and internal 
degrees of  freedom is implicit, 2 being a matrix of  coupling constants. 

It is natural to define an interaction Hamiltonian for QFT over QST associated 
with the interaction (6.11) by the integral defined in Sect. 5 of the expression (6.11) 
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evaluated over the quantum variables qu: 

Hs(t)  ~ f d~r f d3q)~'t) l(q). . .~tn(q) �9 . (6.12) 
Z(1) qo=t 

By the results in Sect. 5 the expression (6.12) can be calculated and agrees with 
an effective nonlocal Hamiltonian defined by 

HI(t)  = f G(Xl . . . . .  Xn; t)){" 01(xl ) . . .  ~n(Xn )" d4Xl-., d4xn , 

G(x1,. . .  ,Xn; t) = f do-~n(X 1 . . . . .  Xn; t ) ,  (6.13) 

where the kernel ~= is given by (5.15). In the important case of a trilinear inter- 
action, we get (cf. (5.22)) 

Hi( t )  = ~ f d 4 a d 4 b  f 2 '  ~/l(X + Apa)~12(x -~- )~pb)l~3(x ) " 6(a, b) d3x, 
xo=t+2p(b--a) 0 

(6.14) 

where the kernel 6 has been calculated in (5.24) and we have used generic units. 
Leaving out the integration over d3x in Eq. (6.14) we get, of course, the effective 
nonlocal Hamiltonian density. 

Interacting fields can be tentatively defined in the following way: since ~b is a 
solution of the Klein-Gordon equation, the form 

(4), f } t  = f da f d3q(c)(q)Oof(q, a)  - Oo~(q)f(q,  a ) )vrd l2  
Z qo =t 

is independent of t for any solution f c M(E)  of the Klein-Gordon equation. If 
U(t ,s )  is the unitary evolution operator with 

U( t , s )U(s , r )  = U ( t , r ) ,  

U(t, t) = 1 , 

d 
dt  U(t, s) = iHi(t)U(t ,  s) , 

we define the interacting field q)i,t by 

(q~int, f}t  ~- U(t,O)(4o, f } o U ( O , t ) .  

Since q~int is not a solution of the wave equation, in general, the lefthand side 
depends on t. 

By choosing suitable solutions of the wave equation for every t and integrating 
over t we determine q~int on the whole state space of g. 

Finally, we may follow the usual procedure and postulate LSZ asymptotic con- 
ditions which then lead to the ordinary perturbation expansion of the S-matrix. 

As usual the n th order contribution can be calculated from the n th order contri- 
bution to the time-ordered function obtained substituting H~(t) in the formula 

, n  ~.fdt~ ...dtn(f2, T (A(x l ) . . .A (xm)Hx(h ) . . .H i ( t=) ) f2 ) ,  (6.15) 
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where the ordering now refers to the x lo  . . . . .  Xmo, t l  . . . . .  tn variables rather than to 
the integration variables in (6.13). This modifies the usual Feynmann rules. Due to 
the non-local character of our effective interaction, for renormalizable theories, the 
renormalized perturbative expansion should agree with the classical one for 2p = 0 
and contain corrections of order 22 due to the quantum nature of spacetime. We 
intend to give a more thorough discussion of these points elsewhere. 

7. Outlook 

The choice of our QST was motivated by our principle that spacetime should have 
an operational meaning; we observed that this meaning would be destroyed by the 
gravitational collapse caused by preparing a very sharply localized state. 

We wish to point out that our uncertainty relations (2.8) and (2.9) appear as 
necessary but not a priori sufficient conditions to prevent gravitational collapse in 
such a process. Hence the Quantum Structure of our spacetime might reflect only 
part of the necessary restrictions. 

The very first steps to QFT over QST outlined in Sect. 6 show that the quan- 
tum structure of our model of spacetime does lead to a smoothing of ultraviolet 
divergences. A more thorough analysis of the surviving divergences and their renor- 
malization in specific models is required (see [23] for related results). 

Properties of the resulting theory which can be tested at a perturbative level 
(cluster properties, convergence of asymptotic states) can be a guide to explore 
properties of QFT over QST. 

We wish to point out several other open problems. 
Causality in QST has been mentioned here as an asymptotic property in the 

limit of vanishing Planck length. However, there might be an exact form, related 
to the causality properties of the free field over QST, expressing the propagation 
of wave functions over QST. But even if such a tighter condition existed, it is not 
obvious whether we can expect any stability under interactions. 

We note that the X-dependence of interactions has been removed by a procedure 
which is not Lorentz invariant. Other approaches are possible, of course, e.g. one 
could treat the variables ~r E N as random variables. Or one could adopt a dynamical 
treatment introducing a-dependent fields. We believe that a satisfactory understand- 
ing of the role of X should be possible if one were to incorporate gravitation in the 
theory. Our QST ought to offer a more suitable basis for the formulation of Quan- 
tum Gravity, as it embodies part of the limitations on the structure of spacetime 
determined by gravity, at least at a semiclassical level. 

More generally, we could use the gauge principle as a natural way of introducing 
interactions between fields over the QST and Connes' non-commutative geometry 
[8] should provide the right framework here. The quantum nature of spacetime 
has the effect of making QED into a non-commutative gauge theory, so that even 
the theory of electro-magnetic fields without matter should become an interacting 
theory. 

The large scale structure of the universe and the microstructure of spacetime 
relate to quite distinct asymptotic regimes. Yet it would be interesting and instructive 
to generalize our quantization procedure to a general curved spacetime. The methods 
of deformation and geometric quantization could well apply here [24-26]. In this 
context, it is quite clear that our formalism is not at all intended to exclude black 
hole formation at scales which are larger than the Planck length. 
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Finally, it would be important to investigate whether a version of  the Euclidean 
approach to QFT is possible for QFT over QST. 

We hope to come back to these and related questions in a continuation of  the 
present paper. 

Appendix A 

Let 9.1 be a C*-algebra with unit I. A selfadjoint operator A affiliated to 9.1 is 
defined by a , -homomorphism (with unbounded support if  A is unbounded) of  
cg0(lR) into ~l, denoted 

f E Cgo(lR) ~ f (A)  E 9~, 

whose support projection E E 9.1"* is central. Equivalently, if  {fn;  n = 0, 1, 2 . . . .  , } 
C :g0(lR)+ is a sequence in the unit ball converging pointwise to I ,  then, for each 
B E 9.1, 

]l[fn(A), Bllln__+cc ---+ 0 .  

We will refer to E as the support of definition of  A (or just support, if  no confusion 
is possible). 

I f  ~I has no unit, A is said to be affiliated to 9X if it is affiliated to the 
multiplier algebra M(9.1). 

A state co (a representation ~) of  9.1 is in the support of  A if  oh(E) = 1 (resp. 
rT(E) = I ) ,  where o5, ff denote the normal extensions to 9.1"*. 

The normal extension of  f ---+ f (A)  E 9I to bounded Borel functions f on IR 
will be also denoted f E ~ ( I R )  --+ f (A)  E 9.1"*. I f  E(2)  =_ Z(-~,z](A),  2 E IR, E is 
the strong limit o f  E()0  as 2 ---+ ec and )~ E IR ~ r~(E(2)) is a spectral family for 
each ~ in the support of  A. For such ~, ~z(A) will denote the selfadjoint operator 
with spectral resolution ~(E(2)) .  

We will say that the selfadjoint operator A affiliated to 9.1 is central if  f (A)  is 
in the centre of  9.I (or of  M(9.I), if  ~I has no unit) for each f E cg0(lR), i.e. if, for 
each representation in the domain of  A, 

~z(A) q ~(9.I)' N ~(9.1)" . 

Since n(A) is anyway affiliated to 7c(9.1)", ~(A)t/n(9.1)'  would suffice. 
A state co E 5~ will be said to be in the domain of A i f  it is in the support 

of  A and 

Sup{co(f  (A)); f C :g0(lR)+, f (2)  <= 22, 2 E IR} = co(A 2) < (x~. 

In this case we may and will write 

-t-oQ 

co(A) = $ ,~ d~(E( ,b ) .  
--OQ 

We can now state some easy facts. 

I. A state co C 5:(9.I) is in the support o f  definition of  A if  and only if the same 
applies to the GNS representation ~ .  
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Furthermore, co is in the domain o f  A if and only if ~o~ is in the domain of  
~ ( A ) ,  in which case we have 

co(A) = (~_o~,~o~(A)~co) . 

I f  co is in the domain of  A we may define 

(Ao~A) 2 =- co(A 2) - co(A) 2 = ]](~o~(A) - co(A)I)~o~ll 2 �9 

Of  course we will say that co is definite on A if co(A 2) = co(A) 2, i.e. if ~o~(A)~o = 

II. Let v be a regular probability measure on 5P(gJ) with barycentre co E 5r(gJ). 
Then (9 is in the support of  A iff v is carried by the states in the support of  A. 

Moreover, co is in the domain of  A if  and only if  v is carried by the states in the 
domain of  A and ~o ~ ~0(A 2 ) is v-integrable. This implies that q~ ---+ ~p(A) is v-square 
integrable since q~(A) 2 < ~o(A2), hence ~o-+ cp(A) is integrable and ~o ~ A~oA is 
square integrable. 

I f  co is also in the domain o f  another selfadjoint operator B affiliated to 9.1, we 
have as in Proposition 3.3, 

Ao~A > f A~A dv(O) ,  

Ao~AA~B > f A~AA~B dv(~o) . 

III. I f  ~ is an automorphism of  9.1 and A a selfadjoint operator affiliated to 9j, 
we can define ~(A) affiliated to 9J by the homomorphism 

f E C~o(lR) ~ f (~(A))  E M(gJ) 

s.t. f (~(A) )  = Y(f(A)) ,  where ~ E Aut M(gJ)  is the extension of  ~ defined by 

~(BC) = ~(B)~(C) ,  B c M(gJ),  C ~ ~ .  

IV. I f  A a , . . .  , A~ are selfadjoint operators affiliated to 9J, we say that they com- 
mute if the f i(Ai) commute with one another for each f i E Cgo(lR ), i = 1, 2 , . . . ,  n. 
In this case, the map f l  |  | f ,  E c~0(lR") ~ f i ( A 1 ) . . . f , ( A , )  E M(gJ) extends 
to a . -homomorphisms cg0(lR") into M ( ~ )  whose support is called the joint spec- 
trum of  A1 . . . .  , A~. 

V. I f  A is a selfadjoint operator affiliated to a C*-algebra 9.I and co is a state on 
9J in the domain o f  A, the state o f  ~ induced by the vec tor  co(AZ)-l/Zgo~(A)~oj in the 
representation no~ will be denoted by COA. I f  A, B are selfadjoint operators affiliated 
to 9.1, we will say that co is in the domain of  their commutator if coA is in the domain 
of  B and cob in the domain of  A, i.e. if ~o~ is in the domain o f  [~o~(A), ~o~(B)]. I f  
A, B, C are selfadjoint operators affiliated to 9J with the same support E such that, 
for each representation ~ in that support (if(E) = I ) ,  the commutator [~(A), ~(B)] 
has closure i~(C), we will write 

[A, B ] -  = i C .  

Appendix B 

I. The manifold Z+ is homeomorphic to TS 2, the tangent bundle to the two- 
dimensional sphere. 
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Let {if, ~} denote the generic point in TS 2, where Y E S 2 is a unit vector in IR 3 
a n d F E I R  3 i s s . t . F - f f = 0 .  

For each a E Z+ let a = (Y, r~) be the parametrization by electric and magnetic 
components, so that g2 = r~2, g .  rB = 1. Hence Y +  n~4=0 and we can define 

I f  o E X+, o = (Y,r~) with g =  r~, let h(o)  6 TS 2 be defined by 

I f  Y+n~, let ff~ = ]]Yx m ] [ - l e x  /~, and let La be the boost along fro with speed 
fl > 0 s.t. 

1 +fi~ 
1 - f 1 2  �9 

Then L~ takes o '  = (fo, f~)  E 2:+ to o = (Y, r~) E X+: 

L~o'L~ = o .  (B.1) 

Choose X E [0, + o c )  s.t. y2 = / , ~ 2  = cosh4x,  i.e. 7 = (1 - f i2)-1/2 = cosh2x. We 
can define a homeomorphism h : o E S+ ~ h(o)  E TS 2 by setting 

h(a)  = {Y~, F~}; F~ = )/ff~. (B.2) 

II. For each point ff, E S 2 there is a Borel section f o r  the action o f  LT+ on S+: 

o E S+ ---+ Ao E LT+, (B.3) 

A~ooA r = o, o E X+ , 

where 00 = (~o, ~o), ~o = (0, 1, 0), s.t. 

A ,  = L~R~ ; Lo a boost, Ro a rotation, (B.4) 

a ~ Lo is Continuous on Z+ , (B.5) 

o E S+\{o/ff~ = fro} -+ R~ is continuous. (B.6) 

We let LG be defined as in I; it suffices to choose a continuous map f C 
S2\{ff0} ~ R(ff) from the 2-sphere minus one point to the rotation group such 
that R(f)Y0 = f.  We can take R(ffo) to be an arbitrary rotation taking Y0 to N0 and 
set 

R ~  = R ( n ~ )  . 

I f  n0 = -e'0, the map R( f )  can be defined as the identity if  f = e0 or as the rotation 
around e0 • f which takes Yo to ff if  i f+  g0. I f  f0 is arbitrary, replacing ~'0 by - f 0  
in the above construction yields a map R ' ( f )  and, for any fixed choice of  a rotation 
R which takes Y to fro, R ( f )  :-  R ' ( f ) R  meets the desired requirements. 

I f  P denotes the space reflection, op = (-Y,  n~) c S7= if o = (~, r~) E Z•  we 
can define A~ =- PL~pRop, o C X, thus extending our section to X and letting it take 
values in the full Lorentz group. 
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Finally we point out yet another picture of  Z which might turn out to be useful. 
Associate to a E S, a = (Y, nT), the vector ff = Y +  in7 E {173. Then v 2 = 2~jv } = e 2 - 

m 2 + 2iY.  nT, so that the image o f  S is the manifold {v E 1123/v 2 = i 2 i } .  The action 

of  L t + on X corresponds to the action o f  C(3, C )  on that manifold, the space or 
time reflection to complex conjugation, and the Euclidean norm Hall, a E s to the 
norm Ilvll = ~ ( ~ ,  ~)a/2 = (�89 

Appendix C 

The goal o f  this appendix is to calculate the kernels ~n and we begin by calculating 
the kernels describing the multiplication in g.  

Let f ( q )  = f d4k fC(k)e ikq. The function f ( x )  = f d 4 k j ' ( k ) e  ier is called the sym- 
bol of  f ( q ) .  We formulate the multiplication in • in terms of  these symbols. The 
symbol of  a product is 

( f l  . . . f ~ ) ( x )  = f d 4 x i  . . . d 4 x ~ f l ( x l ) . . . f , ( x , )  C~(xl - x  . . . . .  xn - x ) ,  (C.1) 

where the distribution Cn is given by 

Cn(Xl . . . .  , Xn) = ( 2 x ) - 4 f d 4 k l  . . .  d4kne -izkjxj+~zj<lkjQkt (C.2) 

The quadratic form in the exponential can be written in the form 

lk  k jQkl  = -~(_, B | Q k )  (C.3) 
j<l  

where k_ = (kl . . . .  , kn) E IR n | IR 4 and B is an n x n-matrix with entries Bjl = 
1, j < l, B jl = O, j = l, B jr = - 1, j > l. I f  n is even, the matrix B has an inverse 

B -1,  with entries (B-1) j l  = ( -1)J+IBj l .  Hence in this case we obtain 

Cn(xl . . . . .  Xn) = rc-2ne-2izj<l(-l)J+lxjQ-lxl,  n e v e n  , (c.4) 

where we have used the fact that B and Q have determinant one. 
J t For later convenience we introduce coordinates yj  = ~ l = 1 ( - 1 ) x l .  In these co- 

ordinates the quadratic form in the exponential assumes the simple form 

n--1 

( -  1 )J+txjQ-lxl = ~ yjQ-~ yj+I �9 (c .5)  
j<l  j = l  

I f  n is odd the matrix B is not invertible. In this case we set f l  . . . . .  f n  = 
f l  . . . . .  f n f n + l  with fn+l  = 1. 
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Since the symbol of  the unit is the function f~+l(X) = 1 we obtain C~ from 

: C n _ l ( X  1 . . . . .  X n _ l ) ~  (4) - - 1 / X j  , n o d d .  (C.6) 

I f  we replace xj  by xj  - x the coordinates y j  with j even remain unchanged whereas 
for j odd y j  is replaced by y j  + x. We have 

2n 
y j Q - l  y j+I  = ~ y 2 j Q - I ( y 2 j + I  - y 2 j - 1 )  , ( c . 7 )  

j = l  j=l  

hence this expression will remain invariant. 
Therefore we find 

~.~gn--1 ~--1 --1 
--4n --z~z.'~ 3)'~d .~/+I ~-2ixQ Y2n C2n(X 1 - x , . . . ,  X2n --  X)  = TC e J= e (C.8) 

and 

C2n+l(X 1 - x . . . . .  X2n+l -- X)  = 7z--4ne -2iZ~'nll3{jQ lyj+t e -2ixQ-ly2n fi(4)(Y2n+l -}- x )  

= ~ -4e-2iz~n=lyjQ-lyj+I(~(4){ \)'zn+l . . . . .  + X) . (C.9) 

The integral over a spatial hyperplane x ~  t can now be easily performed. We 
obtain 

2i 2n -- 1 
f d3xC2n+l(Xl - x  . . . . .  X2n+l - - X )  = r c -4ne  - SJ=lY)Q YY+l(~(y~ 1 q - t )  ( C . 1 0 )  

X 0 =I 

in the odd case and 

f d3xC2n+e(xl  - X , . . . ,X2n+2 --  X)  
xO=t 

= ~--~ fdtlfd4xei~(x~ - x . . . .  ,Xgn+2 - X) 

1 - 2n+l --1 l 1 4 --4(n+l) --21L'j I YJQ Yj+I -2ixQ- (Y2n+2--Q(tlO)) -iqt = ~_~3dqd d r  c xTz e = e 2 , e 

= 12~ (_ dt l~z -4e  - 2i~nlYa+le= " -- i(yO2n+l+t)(~(4)(y2,,~.-'' - �89 (C.11) 

Cn+l by integrating over the last variable. Hence 

C.(Xl . . . . .  xn) = fd4xn+l Cn+l(X1 . . . .  ,Xn+l) 

= re-2( n+l)e-2iz~-I 1 yjQ-lyj+I fd4y~+~ e-2iynQ-lyn+l 

= ~z-2(,+l) e -  2iX j_--11Yj Q -  1Y)+l (2~)43(4)(2Q-1 yn) 

= zc- 2(n- 1 ) e - 2i~ ~=-le )~j Q - 1Y J+ 16(4) (yn) 
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in the even case. Us ing  (C.7)  and the formulas 

J 
Y2j = E(X2I -- X2l-i ), 

l=l 
Y~+I -- YM-1 = X~ - - X ~ + l ,  

2n+l 
o = ( - a ) J ( x  ~ - t)  (C.12)  Y2n+l + t ~ 

j=l  

we obtain the kernels 

~n(xl , . . .  ,xn; t) = f d3xCn(Xl -- X . . . . .  Xn -- X) 
xO=t 

in the form 

/2n+l ) 
~2n+l(Xl, . . . ,X2n+l;g)= 7~-4ne2iAn(Xl--X2'""x2n--x2n+l) �9 ~ I j~=l( - -1; (xO--g  ) 

and 

~ 2 n + 2 ( X l ,  . .  Xzn+2;t)=Tz_4ne2iA~(xl_x2,.. . ,r2,_X2n+l) " 1 r~  i~Z2"_+l(--1)J(xO--t) �9 , 2--~Jatle J-,  J 

/.+1 ) 
x 6(4) ~j~=l(XZj - Xz j_ ,  ) - ~ Q ( q , 6  ) , (c.14) 

where An is the quadratic form on IR 2" x 1R 4 given by 

An(Ul . . . .  ,UZn) = E u2j- lQ - lu21.  (C.15)  
j<_l<~n 
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Note added in proof: The model of QST proposed here is the simplest but not the unique 
one implementing our Uncertainty Relations (2.8), (2.9). In other models with this property 
the commutators of the q's are no longer central, the associated algebras admit representations 
where the stronger uncertainty relations deduced in Section 2 are satisfied, namely inf(Aqj; j = 
1,2, 3) �9 sup(Aqk, k = 1,2, 3) ~> 1 holds too in these representations, however, translation invari- 
ance Planck scale is spontaneously broken [27]: 
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