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It is shown that two quantum theories dealing, respectively, in the Hilbert spaces of state vectors
©, and &, are physically equivalent whenever we have a faithful representation of the same abstract
algebra of observables in both spaces, no matter whether the representations are unitarily equivalent
or not. This allows a purely algebraic formulation of the theory. The framework of an algebraic version
of quantum field theory is discussed and compared to the customary operator approach. It is pointed
out that one reason (and possibly the only one) for the existence of unitarily inequivalent faithful,
irreducible representations in quantum field theory is the (physically irrelevant) behavior of the
states with respect to observations made infinitely far away. The separation between such “global”
features and the local ones is studied. An application of this point of view to superselection rules shows
that, for example, in electrodynamics the Hilbert space of states with charge zero carries already all

the relevant physical information.

I. INTRODUCTION

HE essential feature which distinguishes quan-

tum field theory within the frame of general
quantum physics is the principle of locality. This
principle states that it is meaningful to talk of
observables which can be measured in a specific
space-time region and that observables in causally
disjoint regions are always compatible. It is then
natural to introduce the following concepts: If B
is a region in Minkowski space, we denote by %(B)
the algebra generated by the observables in B. A
specific field theory will fix the correspondence be-
tween regions and algebras

B — %A(B). ey

In fact, we may consider this correspondence to be
the content of the theory. Indeed, once it is known,
one can calculate quantities of direct physical in-
terest such as masses of particles and collision cross
sections.

This approach has been developed in previous
work®'® within the customary framework of quan-
tum theory in which observables are considered
to be (bounded or unbounded) operators on a Hil-
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1 At the present stage thig claim is an overstatement, but
it is a reasonable extrapolation of results described in Ref. 3.

tR. Haag, Colloque Internationale sur les Problémes
Mathématiques de la Théorie Quantique des Champs, Lille, 1957
(Centre National de la Recherche Scientifique, Paris, 1958);
R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962); H.
Araki, “Einfiihrung in die Axiomatische Quantenfeldtheorie,”
Lecture notes at the Eidgenossischen Technischen Hochschule,
Ziirich, 1961 /62, unpublished.

8 R. Haag, Phys. Rev. 112, 669 (1958); D. Ruelle, Helv.
Phys. Acta 35, 147 (1962); H. Araki, see Ref. 2.
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bert space. The algebras A(B) are then concrete
*-algebras of operators and it is mathematically
convenient to replace A(B) by its associated von
Neumann ring R(B). Properties of this family of
von Neumann rings, which follow from general
physical principles or are suggested by conventional
quantum field theory, have been studied in Ref. 2.
Particle aspects and collision theory are treated
in Ref. 3.

In the present paper we shall be concerned with
another question. Suppose that the algebras %(B)
are abstractly defined (without reference to operators
on a Hilbert space).* If we consider a faithful
realization of the algebraic elements by operators
on a Hilbert space we come back to the previous
point of view. However, we expect that there are
many unitarily inequivalent irreducible representa-
tions. This ambiguity, typical of quantum field
theory, has been the subject of some discussion
within the past decade.’ T'o deal with it, most authors
assume that there is one and only one representa-
tion space in which the physical vacuum state ap-
pears as a vector and that we have to single out
this particular representation as the physically

¢In a heuristic manner the commutation relations and
field equations of a conventional quantum field theory
provide such an abstract characterization.

5 It was first noticed in the example of various algebras
associated with infinitely many creation and destruction
operators. See J. von Neumann, Comp. Math. 6, 1 (1938);
K. O. Friedrichs, Mathematical Aspects of the Quantum
Theory of Fields (Interscience Publishers, Inc., New York,
1953). For further discussions of this phenomenon in its
relation to various models in quantum field theory see, for
instance, L. Van Hove, Physica 18, 145 (1952); A. S. Wight-
man and 8. S. Schweber, Phys. Rev. 98, 812 (1955); R. Haag,
Kgl. Danske Videnskab. Selskab Mat.-Fiz. Medd. 29,
No. 12 (1955); 1. E. Segal, Trans. Am. Math. Soc. 88, 12
(1958); J. Lew, Ph.D. thesis, Princeton Univ., 1960, un-
published; and the papers cited in Ref. 6.
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relevant one.” While this attitude appears to be
perfectly consistent it does not go to the heart of
the matter. The fact that no actual measurement
can be performed with absolute precision implies
that the realistic notion of “physical equivalence”
18 far less stringent than that of unitary equivalence.
Our discussion in Sec. IT shows that this notion
coincides with the mathematical concept of ‘“weak
equivalence’’ as introduced by Fell.”

Fell’s results then imply that all faithful repre-
sentations are in fact physically equivalent, thus
opening the way to a purely algebraic approach to
the theory. The distinction between *‘physical”’ and
‘“‘unitary” equivalence was forced on us by the dis-
cussion of examples in a recent paper.’®

The purely algebraic approach to the theory has
been championed for many years by Segal.’ He
pointed out that many questions of physical in-
terest (e.g., the determination of spectral values)
can be answered without reference to a Hilbert
space if one chooses the algebra of observables to
be a C*-algebra.'® Applying these ideas to quantum
field theory Segal expected to circumvent the diffi-
culties associated with the existence of inequivalent
representations.’* So far this approach has stayed,
however, in a somewhat experimental stage, i.e., it
has not yet led to a well-defined frame in which a
satisfactory physical interpretation is specified. It is
the purpose of this paper to establish such a frame
making essential use of the principle of locality.
This frame is very similar to that in Ref. 2 but
differs from it in two respects. First, we consider
the algebras A(B) as (abstract) C*-algebras, not as
operator algebras on a Hilbert space. Secondly, we
exclude from the list of ‘“all” observables those
quantities which refer to infinitely extended regions.
Thus the total energy, total charge, etc., are con-
sidered as unobservable. This is of particular im-
portance in connection with superselection rules
(see Sec. III).

We turn now to a precise specification of the frame:

8 In Wightman’s approach the existence of a vacuum
state and the relevant properties of this state are postulated
on physical grounds. See, e.g., A. 8. Wightman, Phys. Rev.
101, 860 (1956). The following papers discuss the existence
and uniqueness of a vacuum state for specific models. H.
Araki, J. Math. Phys. 1, 492 (1960); D. Shale, Ph.D. Thesis,
Department of Mathematics, University of Chicago, 1961,
unpublished; I. E. Segal, Illinois J. Math. 6, 500 (1962); H. J.
?%%:%ers, R. Haag, and B. Schroer, Nuovo Cimento 29, 148

1 .

7J. M. G. Fell, Trans. Am. Math. Soc. 94, 365 (1960).

8 H. J. Borchers, R. Haag, and B. Schroer, see Ref. 6.

Y I. E. Segal, Ann. Math. 48, 930 (1947).

10 For definitions and relevant theorems see Appendix 1.

1 1, E. Segal, Collogue Internationale sur les Problémes de la
Théorie Quantique des Champs, Lille, 1957 (Centre National
de la Recherche Scientifique, Paris, 1958).
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(1) The “regions” B for which the correspond-
ence (1) is defined shall be the open sets with com-
pact closure” in Minkowski space, the algebras
%A(B) shall be (abstract) C*-algebras.

(2) Isotony: If B, O B, then A(B,) DO A(B,).
We assume in addition that one of the two following
situations prevails. Either H(B,) and %(B,) have
a common unit element, or neither of them has a
unit. The first situation can be obtained from the
second by formal adjunction of a unit.

(3) Local Commutativity: If B, and B, are
completely spacelike with respect to each other,
then %A(B,) and A(B,) commute.

(4) The set-theoretic union of all H(B) is a
normed *-algebra.'* Taking its completion we get
a C*-algebra which we denote by % and call the
algebra of quasilocal observables. We maintain that
A contains all observables of interest.'*

(5) Lorentz Covariance: The inhomogeneous
Lorentz group is represented by automorphisms
A ENA— A" € Usuch that

AB)" = ALB), &)

where LB is the image of the region B under the
Lorentz transformation L.
(6) A is primitive (see Appendix).

Concerning the physical interpretation the es-
sential point is, of course, that the algebra of ob-
servables % has a texture, namely the family of
subalgebras %(B), and that the elements of A(B)
are interpreted as representing physical operations
performed in the region B. In Sec. II we discuss
to some extent how this information can be exploited
and we justify the previously mentioned notion of
physical equivalence of representations. Section III
deals with the separation of global and local aspects
and its application to superselection rules. Section
IV gives a brief comparison between the present
approach and the operator approach.

II. PHYSICAL INTERPRETATION OF AN ALGEBRAIC
SCHEME AND PHYSICAL EQUIVALENCE OF
REPRESENTATIONS

We are concerned with two categories of objects:
‘“gtates” and “operations.” The term “state” is

8 Physically speaking: 4-dimensional regions with finite
extension.

13 The union of all % (B) has an obvious *-algebra structure
due to the isotony assumption. Furthermore, the norm of one
of its elements is the same in all local algebras, % (B) con-
11;a).ining it due to the uniqueness of the C*-norm (see Appendix

14 9 is the collection of the uniform limits of all (bounded)
observables describing measurements performable in finite
regions of space-time. By taking uniform limits we do not
essentially change the local character of the observables
(hence the name quasilocal).
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used for a statistical ensemble of physical systems,®
the term “operation” for a physical apparatus which
may act on the systems of an ensemble during a
limited amount of time producing a transformation
from an initial state to a final state, We assume that
any operation is applicable to any state. This is
one of the idealizations inherent in quantum
physics. One is frequently interested in operations
which transmit only a certain fraction of the systems
of the initial ensemble and eliminate the others.
This fraction (probability) is a number depending
on the initial state and on the operation. It is the
one piece of information about the state which is
gathered by the experimenter performing the opera-
tion." An experiment may always be regarded as
the determination of the transmission probabilities
for a finite number of operations.

We may say therefore that we have a complete
theory if we are able in principle to compute such
probabilities for every state and every operation
when the state and the operation are defined in
terms of laboratory procedures.

It is not the objective of this paper to justify
the particular mathematical formalism by means
of which “states” and “operations” are represented
in quantum theory.'” We accept here uncritically
the following formal structure:'®* One has an algebra
N (which in our case will be identified with the
C*-algebra described in the introduction). A “state’”
is mathematically represented by a positive linear
form (expectation functional) over A. Explicitly, if
¢ denotes a state, then for every A & ¥ we have a
complex number ¢(4), depending linearly on A4
and such that

o(4*4) > 0. 3

The value which ¢ takes for the unit element I of
the algebra defines the normalization of the state.
Intuitively speaking, ¢(I) is proportional to the
number of systems of which the ensemble is com-
posed (the proportionality factor being irrelevant).

18 We adopt Segal’s terminology in which the word state
is used for any statistical ensemble. If the ensemble cannot be
decomposed into purer ones it is called a “pure state,”
otherwise an ‘“impure state’”’ (‘“mixture’”’ in von Neumann’s
terminology).

18 We find it preferable to base our discussion on the
notion of “‘operations’”’ as defined above instead of ‘ob-
servables’ as used by Dirac and von Neumann. An “observ-
able” in the technical sense is an idealization, which in
general implies suitably defined limits of an infinite number
of operations. It is thus a far less simple concept.

7 We hope to discuss this question in another paper.

18 J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, 1955);
L. E. Segal, see Ref. 9.
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One calls ¢(I) the norm of the state ¢.* The col-
lection of all positive linear functionals over ¥ is
the positive cone of the dual space %* of the algebra
and is therefore denoted by %*‘*’. A functional
e € WA* is called “extremal” if it cannot be
decomposed into a positive linear combination of
two others, ie., if ¢ = ap; + Bo, with « > 0,
B>0,0 €A, o, € A is impossible except
for the trivial solution ¢, = A¢. The extremal func-
tionals correspond to pure states.

An “operation” is mathematically represented by
a linear transformation of A* which maps ¥*‘*’
into itself and does not increase the norm. Those
special operations which transform pure states into
pure states are called “pure operations.” It is
asserted that the pure operations are in one to one
correspondence with the elements contained in the
unit sphere of the algebra (elements A €& ¥ with
[J4]] < 1).* The transformation of the (general)
state ¢ by the pure operation A is given by ¢ — ¢,
with

v4(B) = o(A*BA). @)

Therefore one gets for the transmission probability
of ¢ through A the expression

Plp, A) = p(A*A)/e(I). ®)

Apart from the emphasis on “operations’ instead
of “observables” the preceding paragraph was just
a description of the standard formal structure of
quantum physices. It may be useful to point out the
difference between the Hilbert space approach® and
the purely algebraic approach® as far as this general
formalism is concerned. In the former case the only
states considered are the density matrices in the
representation space (positive-definite self-adjoint
operators with finite trace). This collection of states
is a subset (usually not the whole) of %*‘*’. The
purely algebraic approach on the other hand con-
siders all elements of A*‘*’ as possible states. One
has to ask therefore whether this richer supply of
states makes the physical interpretation more
difficult.

We must turn now to the physical interpretation,
i.e., to the following question: Suppose a specific
mot crucial to assume that the algebra contains the
unit element; see Appendix 1. The norm is then defined as
sup |2(4)[/[|4]]. . . .

20 It has been emphasized by H. Ekstein that, in general,
one algebraic element will correspond to many different
laboratory procedures which are equivalent insofar as they
produce the same transformation of the states. For simplicity
we shall, however, always speak of an “operation” instead
of an “equivalence class of operations.”

2 J, von Neumann, see Ref. 18.
2 ]. E. Segal, see Ref. 9.
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operation (or state) is defined in terms of a laboratory
procedure. How do we find the corresponding ele-
ment in the mathematical description? For the
“‘operations’” the question is partially answered by
the assertion: An operation in the space—time region
B corresponds to an element from A(B). It is very
likely that this simple statement provides not only
a partial answer but a complete one because ulti-
mately all physical processes are analyzed in terms
of geometric relations of (unresolved) phenomena.
In any ease it is rather evident that one can construct
a good mathematical representative of a Geiger
counter coincidence arrangement using the sub-
algebras for finite regions.”

The remaining task is to bridge the gap between
the physical and the mathematical description of a
state. One possible attitude is, of course, to say
that the state ¢ may be described physically (as
well as mathematically) by the collection of proba-
bilities P(p, A) for all pure operations A. This
would mean that, once an ensemble has been pre-
pared, “somehow’” we make all sorts of monitoring
experiments to find out which ensemble we have.
The other attitude is to assume that the ensemble
is prepared by means of a single, specific operation
from an initial ensemble which is completely un-
known. In practice both methods (preparation of
ensemble by a ‘filtering” operation from an un-
known ensemble and determination of ensemble by
monitoring experiments) are used to supplement
each other. In both respects it is clear that the
physical interpretation of states is fixed once we
know the correspondence between the mathematical
and the physical description for the operations. It
is, however, also clear that no actual experiment will
enable us to establish a definite state.

Take, first, the case of monitoring experiments
on an ensemble. These will provide us with a finite
number of probabilities, measured with a finite
accuracy. In the mathematical scheme this informa-
tion characterizes exactly a neighborhood in the
weak topology of A*. Namely, if the probabilities
are the transmission probabilities for a collection of
pure operations 4; (# = 1, -+ , N) then we know
that the state satisfies®™

ﬁo(I) = 1)
|¢(A>§A-') - Pi| < &,

(6)
@

23 This will be discussed in a separate paper. See also Ref. 3.
24 We chose (arbitrarily) the normalization of the state.
For the sake of symmetry with Eq. (7) we could write, instead
of (6), equally well,
[8(I) — 1| < eo
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where p; are the experimentally determined proba-
bilities and e; the errors. If, alternatively, one wants
to define the ensemble in terms of a single prepara-
tory operation then the discussion is mathematically
somewhat more difficult. Let T be the preparing
operation and R, its range (the image of *‘*’
under 7). Then the only certain knowledge about
the prepared state is that it lies in R;. To obtain
definite state we need an operation with a one-
dimensional range. There are two reasons why such
an ideal operation is impossible. The first has to
do with the limited accuracy in the specification
of T [the counterpart of the errors ¢ in Eq. (7)].
The other comes from the special structure of our
algebra . Namely, it is evident that no quasilocal
operation can have a finite-dimensional range be-
cause an operation in a finite region has no effect
on the physical situation in a causally disjoint region.
While we are unable at the moment to give a precise
analysis of the consequences of these two limitations
we feel that the first one (limitation in accuracy)
will result in the statement that we have in no
actual experiment a precisely specified state but
rather a weak neighborhood in %*‘*’. This is the
conclusion relevant to the remaining discussion in
this section. The other limitation, arising from the
special nature of the quasilocal algebra probably
implies that there exist many unitarily inequivalent
irreducible representations of . (See Sec. ITI and
Ref. 5).

The foregoing discussion leads us now to the
following:

Statement. Let R and R® be two representa-
tions of A and Q,, @, the subsets of states which
correspond to density matrices in the two repre-
sentation spaces. The two representations are
physically equivalent if every weak neighborhood of
any element of Q, contains an element of @, and
vice versa.

The notion of physical equivalence coincides
exactly with that of “weak equivalence” as defined
by Fell.*® We can apply Fell’s equivalence theorem,
lLe., two representations are weakly equivalent if
and only if they have the same kernel.?

The conclusion is thus that all faithful representa-
tions of A are physically equivalent. The relevant
object is the abstract algebra and not the representa-
tion. The selection of a particular (faithful) repre-
sentation is a matter of convenience without physical

26 See Ref. 7 and the last paragraph of Appendix I.
* The kernel of a representation is the collection of all
elements of 9 which are represented by zero.
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implications. It may provide a more or less handy
analytical apparatus.

It also follows that we should consider only faith-
ful representations because, supposing for a moment
that a nonfaithful representation with kernel K
contained all physically relevant information then
the only physically equivalent representations would
be those with the same kernel. The relevant object
is then not the algebra A but the quotient A/K.
According to a well-known theorem this quotient
is again a C*-algebra, and we should have taken
this algebra in the first place instead of ¥.

As a final remark we might add that it appears
natural to assume that ¥ is primitive, i.e., that it
has at least one representation which is both faith-
ful and irreducible. It would be tempting to assume
even that ¥ is simple, i.e., that all its representations
are faithful.””

III. LOCAL AND GLOBAL PROPERTIES.
SUPERSELECTION RULES

It was pointed out in the introduction that all
actual experiments involve only operations in finite
space-time regions. Hence it is natural to introduce
the notion of a ‘“partial state with respect to a
region.”’

Definition. A partial state with respect to region
B is a positive linear form over the algebra A(B)
or, alternatively speaking, an equivalence class of
“global states” (positive linear forms over %) which
coincide on A(B).

The two alternative definitions are equivalent
due to the following theorem which we use again
later:

Theorem.” If A, and A, are two C*-algebras and
A, C A, then every state (positive linear form)
over N, can be extended to at least one state over
%A,. A pure state over U, can be extended to a pure
state over 9.

It is of interest to understand the coupling be-
tween the partial states of different regions which
results from algebraic relations between the various
subalgebras A(B). We shall call the partial states
in regions B, and B, completely uncoupled if,
choosing an arbitrary pair of equally normalized par-
tial states ¢’ € A(B)*’ and o® & A(B,)*,
one can find a global state ¢ which is an extension

7 Compare B. Misra, “On the algebra of quasi-local
operators of Quantum Field Theory,” to be published. See,
however, Appendix II for an example of a nonsimple algebra
of physical interest.

8 See, e.g., M. A. Neumark, Ref. 42.

R. HAAG AND D. KASTLER

of both ¢’ and ¢®. The extreme opposite of this
situation (i.e., complete coupling) prevails if each
partial state in B, determines uniquely a partial
state in B, by the process of extension to % and
restriction to A(B,).

On physical grounds we want:

(i) If B, is contained in the causal shadow of B,
then the partial states in B, are uniquely
determined by those in B, (causality).

(ii) If B, and B, are causally disjoint then the
partial states in the two regions are es-
sentially®® uncoupled (locality).

Property (i) is equivalent to the algebraic require-
ment

A®B,) C AB,) ®)

for all regions B, in the causal shadow of B,.*
Property (ii) is related to the local commutativity
postulate but we do not know whether this postulate
is already enough to guarantee the lack of coupling
for partial states in causally disjoint regions or
whether some further structure property is needed.

We now give a brief intuitive (nonrigorous) dis-
cussion of some phenomena for which the distinetion
between global and local features plays a role.

A. Existence of Unitarily Inequivalent Irreducible
Representations of ¥

A pure state over U corresponds to a vector in
some irreducible representation space of %. Two
pure states belong to the same representation if and
only if the one results from the other by transforma-
tion with an element of the algebra [in the sense of
Eqg. (4)].* Otherwise they belong to representations
which are unitarily inequivalent.

We confine our attention to the states without
infinitely extended correlations. These states are
characterized by the property that an operation in
region B does not affect the partial state in a far

# From the physical point of view it would not be necessary
that the uncoupling is complete if the separation distance
between B, and B, is finite but only that it becomes complete
in the limit of infinite spacelike separation.

% Let %; and ¥, be two subalgebras of % and A,*, A,*
those subspaces of 9* which are composed of the linear forms
vanishing respectively on % and ¥,. If the “partial states”
over %, determine those over A, we have

At D Myt
Wbt C YLl

But %;**, considered as a subset of %, coincides with the
uniform closure of ¥, i.e., with ¥, itself.
1 Compare Appendix I, Kadison’s Theorem, Ref. 53.

Thus
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away region B’ (apart from a change in normaliza-
tion).* In symbols:

2(QQ") = o(@e(@")/e(D) ©)

if @ and Q' belong to the algebras of two far-separated
regions.

Consider now an infinite collection of causally
disjoint regions B,. Let ® be a pure state without
infinitely extended correlations; the corresponding
partial state in B, will be denoted by ¢;. It is clear
that a transformation of ® by an element from %
will not change the asymptotic tail (k — «) of the
sequence of partial states ¢,, apart from a common
normalization factor, because any element of U can
be approximated to arbitrary precision by an
operation in a finite region. The asymptotic tail
of the sequence of partial states ¢, is thus common
to all normalized states belonging to the same
representation as . It is a ‘‘unitary invariant”.
On the other hand the lack of coupling between
partial states in causally disjoint regions [property
(i)] suggests that there is an enormous variety of
possible asymptotically different sequences ¢,. This
gives us then many unitarily inequivalent repre-
sentations of . They differ in the global aspects
of their states but this difference is irrelevant as
long as we are interested only in experiments in
finite regions (“physical equivalence” of all these
representations).

B. Lorentz Transformations

As postulated under item (5) in the introduction
we have for every element L of the inhomogeneous
Lorentz group an automorphism of the algebra:
A — A*. The automorphism defines a corresponding
transformation in the state space, namely

e oy with ¢ (4) = o(45). (10)

This is a linear transformation in the Banach space
A* which preserves the norm and transforms the
positive cone %**’ into itself. Since

(11)

we get in this way an “antirepresentation’” of the
Lorentz group (by isometric operators in a Banach
space). In the special case when L is a translation
by a 4-vector x we write A® and ¢, for the trans-
formed quantities.

Since Lorentz transformations are global opera-

(¢L:)I4. = PLaLay

2 “Far away’’ means the limit of an infinite spacelike
separation.
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tions, affecting the far away regions as strongly
(or even stronger) than the regions nearby, they do
not correspond to elements in the quasilocal algebra
A. Indeed, if we assumed that there is an element
U(L) in ¥ such that

A" = UL)AU'(L) forall A €A, (12)

we would get an immediate contradiction.*® We
could then approximate U(L) by an operation C
in a finite region B such that ||[U(L) — C|| < e
Taking A € A(B') with B’ causally disjoint from
B, Eq. (12) would imply

1A% — A|| <2||A]]e forall A € AB"),

which is not true.

We may assume, however, that there are ele-
ments in A which produce the same effect as a
Lorentz transformation within an arbitrarily chosen
finite region B. Denoting such an element by Ug(L)
we have instead of (12)

A" = Ug(L)AU3 (L) forall A € AB). (13)

of course the Ug(L) are not uniquely determined
by (13).

We may ask next whether the Lorentz trans-
formations can be represented by unitary operators
[again denoted by U(L)] in an irreducible repre-
sentation space of the algebra . This is the situa-
tion assumed in the usual analytic apparatus of
quantum field theory. We may call it “Lorentz
invariance of the representation” as distinguished
from the Lorentz invariance of the algebraic theory
which was postulated in the introduction. From the
discussion A it follows that this is only possible if
all the states ¢ belonging to the representation
have the property®*

HB(wL)

when the region B is moved to infinity keeping its
shape fixed. In other words, for such a representation
all partial states in far away regions must be Lorentz
invariant. The requirement that the Lorentz trans-
formations shall be represented by unitary operators
in the Hilbert space (Lorentz invariance of the
representation) is thus a very powerful restriction
eliminating most of the representations discussed
under A).

—B,||—0 (14)

3 An automorphism of the type (12) is called an inner
automorphism of the algebra. Our argument here shows that
the Lorentz transformations are outer automorphisms.

. ¥ The symbol B, is used here to denote the partial state
in B resulting from the restriction of ¢.
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In a Lorentz-invariant irreducible representation
of ¥, the Lorentz operators U(L) are, of course, ob-
tainable as strong limits of the quasilocal operators
since the strong closure of the collection of repre-
sentatives of U is the ring of all bounded operators
on the Hilbert space. Consider a family of regions
B, such that B,,, D B, and B, = U B, is the
whole of Minkowski space. The representatives of
the corresponding family Us,(L) [see Eq. (13)] form
a strongly (but not uniformly) converging sequence
of operators due to the fact that every state in the
representation space has the asymptotic property
(14). The limit of the sequence is U(L). In other
representations in which the states have different
asymptotic properties this sequence does not con-
verge at all. This illustrates how global operations
such as Lorentz transformations may be defined in
suitable representation spaces as strong limits of
quasilocal operations. The strong convergence of
such a sequence of operators arises from the (com-
mon) asymptotic properties of all the states in the
representation space. Strong convergence depends
on the representation whereas uniform convergence
does not.

C. Superselection Rules

In the usual formalism of Quantum field theory
a superselection rule means that there are operators
in the Hilbert space which commute with all ob-
servables. Typical examples of such “superselecting
operators” are the total electric charge or the total
baryon number. This customary representation of
the algebra of observables is reducible. It ean be
decomposed into irreducible ones which we shall
call “sectors.” Each sector corresponds to a definite
numerical value of the charge.*

We note first that the charge (as well as every
other superselecting operator) is a global quantity.
The distinction between the different sectors can
therefore not be made by means of experiments in
finite regions. A simple argument shows then that
every sector is physically equivalent to every other
sector. Let us demonstrate this for the two sectors
corresponding to charge 3 and charge —1, respec-
tively. We have to show that given an arbitrary
state ¢ of charge 3 and an arbitrary finite set of
elements A; & A we can find a substitute state ¢
with charge —1 so that the expectation values of
the A, in the two states differ by less than an
arbitrarily prescribed tolerance e. The way to con-

3% For the sake of simplicity we pretend that the electric
charge is the only superselected quantity and thus use the
word ‘“‘charge’ in lieu of ‘“‘superselected quantities.”
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struct ¢’ is physically evident. We change the
physical situation described by ¢ adding 4 ele-
mentary particles of negative charge in a remote
region of space. The effect of this added charge on
the expectation values of the quasilocal quantities
A; tends to zero as the region is moved to infinity.

We conclude then from Fell’s equivalence theorem
that each single sector is a faithful representation
of A.*® A single sector contains already all relevant
physical information. We note incidentally that we
have here an example of a quasilocal algebra which
has (at least) a denumerable infinity of unitarily
inequivalent, Lorentz-invariant, faithful, irreducible
representations (the various sectors).

In the standard treatment of field theory one
considers the direct sum of all the sectors. If §,
is the representation space of the sector with charge
n then one uses the Hilbert space

H=2%9. (15)

Let us denote the representation of % in § by R,
the range of this representation (i.e., the set of
operators in § representing the elements of %) by
E(%). It is instructive to observe now the difference
between weak and uniform closure. Since ¥ is a
C*-algebra R(A) is already uniformly closed. In
the decomposition (15) the general element is of
the form

‘R_(4) 0
R (A)
0 R(4).

L .

R(4) = (16)

where R, is the irreducible representation of sector n.
Since each R, is faithful, these irreducible repre-
sentations are rigidly coupled together. In other
words, a single one of the suboperators R,(4)
uniquely determines A and hence it fixes all the
other R,(A). Thus in particular the projection
operator P, on the subspace §, does not belong to
E(A) because the only element of R(A) which is
zero in some sector is the zero operator on §. Let
us consider now the weak (or strong) closure of
E(%). This is the von Neumann ring generated by
R(A) and can be alternatively obtained as the bi-
commutant E()"”. Since the representations R,
are irreducible and unitarily inequivalent Schur’s
lemma implies that the commutant R(%)’ consists

3 The theorem tells us that one sector is equally as
faithful as the collection of all sectors taken together.
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of all operators of the form ), ¢,P, where the c, are
an arbitrary bounded sequence of complex numbers
and P, is the projector on §,. Taking the commutant
again we find that a general element of E()” is
of the form

(. |

17

L *J
where the K, are arbitrary bounded operators on
the corresponding sectors (which can be chosen
completely independent of each other). Thus the
weak (or strong) closure of R() is the (uncoupled)
product®” of all the full matrix rings B(9,). It con-
tains in particular all the projectors P,, all the
bounded functions of the charge as well as the
Lorentz operators U(L) (“global” quantities).

IV. COMPARISON WITH OPERATOR APPROACH
TO QUANTUM FIELD THEORY

The postulates of a purely algebraic theory which
have been stated so far [items (1) through (6) in
the introduction, and (i) and (ii) in Sec. III] are
not as powerful as those in other approaches to
quantum field theory (Wightman’s axioms or those
of Ref. 2). In some respects this is good because a
few irrelevant restrictions which are customarily
imposed are eliminated. In other respects, however,
the scheme as presented here is quite incomplete.
It does not yet contain a stability condition and we
have not formulated the counterparts of the finer
structure properties which can be stated in the
operator form of the theory. We shall point out
now some of the features which are lacking in the
present formulation.

The bridge between the algebraic approach and
the customary analytic apparatus is the assumption
that there exists a state ®, over the algebra % which
is called the physical vacuum state and is supposed
to have the following properties:

(o) ®, is Lorentz-invariant, i.e., (®5)r = ®o.

(8) @, is a vector state of an irreducible, faith-
ful representation of ¥ in a separable Hil-
bert space £.%°

37 In the sense of Dixmier: Les Algtbres d’operateurs dans
Pespace Hilbertien (Gauthier-Villars, Paris, 1952), Chap. I,
Sec. 2.2,

3 The representation is determined by &, via the GNS
construction. See Appendix I, Ref. 59. It is irreducible if ®, is
pure. The separability would follow from the irreducibility if
the algebra were separable in the norm topology.
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(y) The Hamiltonian® is a positive-semidefinite
operator in §.

It appears to us that the existence of a vacuum
state with properties («) and (8) is no sine qua non
for a physically meaningful theory. In particular,
in a theory describing among other things particles
with zero rest mass one may have doubts as to
whether the assumptions (a) and (8) are physically
reasonable.”” On the other hand, it is clear that
some stability condition like (y) is absolutely es-
sential. The condition (y) has also been one of the
most useful tools in Wightman’s approach.

Let us compare now the algebraic approach with
that of Ref. 2 which is conceptually almost identical
but uses von Neumann rings R(B) instead of
abstract C*-algebras A(B). Given any specific ir-
reducible, faithful representation of U (say the
representation R,) we have immediately also a
system of von Neumann rings which we denote
by R,(B) in the representation space &.. The
ring R.(B) is just the weak closure of the concrete
C*-algebra of operators R,{%W(B)} [the representa-
tives of A(B) in the representation R.]. This ring
system will satisfy the conditions of locality and
causality; namely R,(B,) and R,(B,) commute if
B, and B, are causally disjoint, and R,(B,) C
R.(B,) if B, is the causal shadow of B,. This fol-
lows immediately from the corresponding relations
for the algebras A(B). However, within the set of
von Neumann rings one has one important opera-
tion which has no direct counterpart in our family
of C*-algebras. This is the passage from a ring R
to its commutant R’. This operation has been ex-
tensively used in Ref. 2 to formulate more detailed
structure relations of the ring system which are
very interesting because they open a way for a
discussion of gauge groups and a distinction be-
tween theories with interaction from trivial theories
in terms of local observables.*" One typical example
of such a relation is the “additivity”

R(B, U B,;) = {R(®B,), R(B,)}"". (18)

Considering only the special case in which B, and
B; are causally disjoint this relation may be assumed

8 Tt follows from (a) that the representation obtained by
the GNS construction from &, is Lorentz-invariant. Hence
there exists a l-parameter group of unitary operators U(z)
representing the time translations in &. The Hamiltonian is
the infinitesimal generator of this group.

. * This question was studied in Ref. 8 but the argument
given there is inconclusive in some respects.

4 For some conjectures in this direction see R. Haag, Ann.
Physik 11, 29 (1963) and Proceedings of the Conference on
Analysis in Function Spaces, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1963.
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to hold for theories without superselection rules but
to fail, for instance, in a theory with charged fields.

The question is therefore whether such relations
ag (18) can be given a meaning in the purely algebraic
approach, in other words, whether they are inde-
pendent of the particular representation «. Since
the double commutant is the same as the weak
closure this would be the case if all (faithful) repre-
sentations of A were ‘“locally gquasi-equivalent.” The
notion of “quasi-equivalence’ of two representations
was introduced by Mackey and is described in
Appendix I. It is more restrictive than weak equiv-
alence and less restrictive than unitary equivalence.
By “‘local” quasi-equivalence of two representations
we mean that for any (finite) region B the two
representations of the subalgebra %(B) are quasi-
equivalent whereas the two representations of the
full algebra ¥ need not be quasi-equivalent.

As pointed out in the Appendix, one may charac-
terize quasi-equivalence also by the fact that the
sets of states which appear as density matrices in
the different representations are identical. Thus, the
agsumption of local quasi-equivalence of all repre-
sentations means that each finite region B has a
(universal) set of partial states which corresponds
to the collection of density matrices in an arbitrary
(faithful) representation of A restricted to A(B).
In more intuitive language this assumption means
two things. On the one hand, the results of measure-
ments in a fixed finite region B shall be uniformly
unaffected if one changes the state by “adding
particles behind the moon,” i.e.,

|8(4) — #'(4)] < ¢ ||A]] forall 4 €A®B), (19)

if @’ results from ® by a unitary operation in a very
distant region. Secondly, there shall be no other
limiting procedure leading to the construction of
inequivalent irreducible representations of ¥ besides
the one involving large separation in position space
and discussed in the last section. In particular one
might wonder about the asymptotic limit for high
energies. Is it possible to have states which differ
in the asymptotic tail of their high-energy behavior
(i.e., which give different expectation values for
local operations involving ‘‘infinitely high” energy
transfer)? The answer is probably no. Thus the
assumption of local quasi-equivalence seems to us
at the moment not unreasonable.

Another even stronger, assumption which is not
contradicted by any of our present knowledge is
that of “local unitary equivalence’”’ of all irreducible,
faithful representations of . This would mean that
if R and 8 are two such representations of % then

R. HAAG AND D. KASTLER

R(U(B)) and S(A(B)) are unitarily equivalent for
every finite B, however, in such a way that no inter-
twining operator exists which is independent of the
region B.
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APPENDIX I. C*-ALGEBRAS#

A complex (or real) algebra ¥ is a complex (or
real) linear space such that to each ordered pair 4,
B & U there corresponds an element A B € ¥,
called their product, which is bilinear and associative
(in general not commutative). In the special case
where AB = BA for all A, B & ¥, % is said to
be Abelian. ¥ is a *-algebra®® if to each 4 € U
there corresponds a 4* € U, called the adjoint
of 4, so that A — A* is a conjugate-linear mapping
with the properties A** = A and (AB)* = B*A*
for any A, B € %. A is a normed algebra if to each
A & U there corresponds a nonnegative number
||A||, called the norm of A, in such a way that
[lA]l > O whenever A # 0 and, for any two A,
B & ¥ and any number ), ||4 + B|| < ||4]| + [|B]],
IM|l = [A] ||4]] and [|AB|| < [|A]|-||B]|. Taking
{|A — B|| to be the distance of two elements 4, B
one defines on A the topology of a metric vector
space called its uniform or norm topology. If ¥ is
both a *-algebra and a normed algebra we call it
a *-normed algebra® provided ||4*|| = ||4]] for all
A & U. A very important class of *-normed algebras,
that of Banach *-algebras*® is obtained by requiring
completeness in the norm topology (i.e., convergence
of all Cauchy sequences of elements of % with
respect to the norm to some element in ¥). One
easily sees that any norm-closed *-algebra of bounded

“ For general sources of information on C*-algebras see
M. A. Neumark, Normierte Algebren (VEB Deutscher Verlag
der Wlssenschaften, Berlin, 1959), Chap. V, Sec. 24; and
C. E. Rickart, General Theory of Banach Algebras (D. Van
Nostrand, Tne. ., New York, 1960), Chap. IV, Sec. 8. In
general we use Rickart’s termmology

43 Called symmetrische Algebra by Neumark.

“In Rickart’s terminology. Neumark’s is:
symmelrische Algebra.

4 In Rickart’s terminology. Neumark’s is: vollstdndige
normzierie symmetrische Algebra.

normierte
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operators on a Hilbert space is a Banach *-algebra
(with respect to the usual addition, scalar multipli-
cation, product, adjoint operation, and norm of
bounded operators). However, the converse is not
true and it has been shown by Gelfand and Neu-
mark*® that by requiring ||4*4|| = ||4||* for all
A &€ U one singles out those particular Banach
*-glgebras which are isomorphic to (i.e., concretely
realizable as) norm-closed *-algebras of bounded
operators on some Hilbert space. These algebras
are the interesting ones for quantum theory and
we will call them C*-algebras.” A typical example
of a C*-algebra is the algebra B($) of all bounded
operators on some Hilbert space £.

A linear mapping L of an algebra 2 into an
algebra ¥, which preserves products is called a
homomorphism. If W and A, are *-algebras and ad-
joints are mapped into adjoints, we speak of a
*-homomorphism. The kernel of the homomorphism
L is the set of elements of % which are mapped into
the zero of ;. A (*-)homomorphism is one-to-one
if and only if its kernel reduces to zero, in which
case it is called a *-isomorphism. A linear subspace
J of an algebra ¥ is a left (resp. right, resp. two~
sided) ideal if A € Jand B € W imply BA € J
(resp. AB € J, resp. BA and AB € J). If U is
a *-algebra and 4 & J implies A* € J, we speak
of a #*-ideal. Two-sided ideals (*-ideals) are in
one-to-one correspondence with homomorphisms
(*-homomorphisms), the first being the kernels of
the latter. Given a two-sided ideal (*-ideal) J
of A, the corresponding homomorphism (*-homo-
morphism) is obtained by assigning to each ele-
ment A & U its class modulo the elements of J.
The algebra (*-algebra) of these equivalence classes
is denoted %A/J and called the quotient of ¥ by J.
A representation R of the algebra % on a linear
space § is a homomorphism of ¥ into the algebra
of linear operators on §: to each A € %A R assigns
a linear operator R(A) on § the correspondence
A — R(A) respecting linear combinations and
products. R(4) is called the representative of A
in B and the set of representatives of all A & U
in R is called the range of R. R is faithful if it is

( 9“’ I) M. Gelfand and M. A. Neumark, Mat. Sb. 12, 197
1943).

47 Here we depart from Rickart’s terminology who calls
B*-glgebra the abstract C*-algebra and reserves the term
C*-algebra for a concrete norm-closed algebra of operators on
a Hilbert space (we speak in this case of a concrete C*-algebra).
Qur C*-algebras (Rickart’s B*-algebras) are called by
Neumark vollregulire vollsiéndige Algebren. Note that the
condition |[A*A]] = |JA|]? is evidently fulfilled in an operator
algebra and that the distinction between abstract and con-
crete C*-glgebras is important because different concrete
C*-algebras can define the same abstract C*-algebra.
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one-to-one and algebraically irreducible if the only
subspaces of § invariant for all R(4) are {0} and
& itself. In the case where % is a *-algebra, § is a
Hilbert space and R is a *-homomorphism into B($)
we speak of a *-representation and call B (topo-
logically) irreducible®® if {0} and § are the only
closed subspaces of § invariant for all B(4). Further-
more, we call R conttnuous in case ||R(4)|| < C ||4]|
for all A & U and some positive constant C. One
shows that every *-representation of a Banach
*-algebra® is continuous. An ideal J C U is called
primitive if it is the kernel of an algebraically ir-
reducible representation. ¥ itself is primitive if {0}
is a primitive ideal, ie.,, if A admits a faithful
algebraically irreducible representation. The radical
of an algebra U is the intersection of all its primitive
ideals. In the case where % is a *-algebra its *-radical
is the intersection of the kernels of all topologically
irreducible *-representations. ¥ is simple if it con-
tains only the trivial ideals {0} and ¥ itself. It is
semisimple (*-semisimple™) if its radical (*-radical)
reduces to zero. Simplicity obviously implies that
all representations are faithful which implies primi-
tivity in the case of a Banach #*-algebra. Semi-
simplicity (*-semisimplicity) means only that the
collection of all algebraically irreducible representa-
tions (topologically irreducible *-representations) is
faithful in the sense that no two different elements
of U can have the same representative in all of them
(we also say that the irreducible representations
separate ).

The relation between separation properties of
representations and the ideal structure of ¥ is
greatly simplified in the case of C*-algebras due to
several important peculiarities. First, every *-
isomorphism of a C*-algebra into another C*-
algebra is norm-preserving. Second, every closed
ideal J is a *-ideal and the corresponding quotient
algebra A/J (equipped with its natural norm

14+ JIl = inf |4 + A[])

is itself a C*-algebra.”’ Combining these facts, one
finds that every *-homomorphism of a C*-algebra
has a uniformly closed range. In particular, the
range of a *-representation of a C*-algebra is itself
a (*-algebra, the representation being norm-pre-

. %8 We always use the word irreducible to mean topologically
ure:glwlt:leh
ether or not ¥ contains an identity. See Rick
(Ref. 42), Theorem (4.1.20). ¥ art
5 Neumark uses reduziert for *-semisimple and redu-
zierendes Ideal for *-radical (in the case of Banach *-algebras).
6 “dl\g. A. Neumark, Ref. 42, Chap. V, Sec. 24, Theorems
and 3.
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serving if it is faithful. Further, a C*-algebra is
always semisimple and *-semisimple (its radical and
*_radical both reducing to zero).** Another important
result, due to Kadison,” is that every topologically
irreducible *-representation of a C(*-algebra is
algebraically irreducible. Finally, every algebraically
irreducible representation of a C*-algebra in a com-
plex linear space is algebraically equivalent to a
*.representation in a Hilbert space. Therefore every
primitive ideal is the kernel of an irreducible *-
representation. A primitive C*-algebra can accord-
ingly be defined as a C*-algebra having at least one
faithful irreducible *-representation.

Two representations (*-representations) B and S
of A on the respective spaces § and & are called
algebraically (unitarily) equivalent if there exists a
regular linear (unitary) operator U from £ onto &
such that

UR(A) = S(A)U forall A €. (20)

Any linear (bounded linear) operator U from £
into & satisfying (20) is called an intertwining opera-
tor for R and S. The set of such intertwining opera-
tors will be denoted by R(R, S).** In the case of
*-representations, one of the two following situations
prevails: either R(R, S) = {0} or there exist in-
variant closed subspaces £, and ®, such that the
restrictions of B and S on those subspaces (called
subrepresentations of R and 8) are unitarily equiv-
alent. In particular, if B and S are irreducible and
inequivalent, R(E, 8) = {0} and R(R, R) consists
of the multiples of unity (those two facts being
generalizations of Schur’s lemma). Note that
R(R, R) is a von Neumann ring, namely the com-
mutant of B().

Two *-representations R and S of ¥ will be called
disjoint®® if (R, S) = {0}, i.e., if R and S contain
no subrepresentations which are unitarily equiv-
alent. We consider now the decomposition of a
representation into disjoint parts. Let R be a *-
representation on § and £, be a (closed) subspace
of £ with projector E. £, is invariant in R if and
only if £ € (R, R). In that case its orthogonal
complement §7 is also invariant and the restrictions
of B on &, and §7 (subrepresentations) are disjoint
if and only if E is in the center of R(R, R) (the
center of an algebra being the set of its elements
which commute with all others). A *-representation

2 M. A. Neumark, Ref. 42, Chap. V, Sec. 24, Theorem 4.
( 53 I){ V. Kadison, Proe. Natl. Acad. Sci. U. 8. 43, 273
1957).
# See G. W. Mackey, “The Theory of Group Representa-
tions,”” University of Chicago, mimeographed lecture notes.
% See Mackey, Ref. 54.
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R of U is called primary® if the center of R(R, R)
contains only the multiples of unity (so if no two
subrepresentations of R are disjoint). We have seen
that the range R(N) of R is closed in the norm-
topology of operators on &, but it is in general not
closed in the weak topology of operators on £ (the
weak closure of R() is the von Neumann ring
R(A)” which contains in general many more opera-
tors than R() itself). R is primary if R(A)" is a
factor in the sense of von Neumann.

Two representations B and S of % are called
quasi-equivalent™ if they have the same kernel (i.e.,
if their ranges are *-isomorphic) and if this *-
isomorphism extends to the weak closures of the
ranges in the respective weak topologies of operators
on the representation spaces. The *-representations
R and 8 are quasi-equivalent if and only if no
subrepresentation of the one is disjoint from the
other. If B and S are primary then they are either
quasi-equivalent or disjoint.

A role of primary importance in the study of a
Banach *-algebra is played by its positive forms. A
linear form ® on A is called continuous if |®(4)| <
C ||4]| for all 4 & % and some positive constant C.
The smallest such constant is denoted by ||®|| and
called the norm of &, Under this norm the set of
all continuous forms on U is a Banach space called
the dual space of W and denoted by %*. (The Banach
space topology of %* is called its uniform or norm
topology.) Another topology of interest on A* is
its weak topology (with respect to ) characterized
by the pseudo-norms N,(®) = |®(A)| where A
runs through % (or by the complete set of neighbor-
hoods of zero V4, ¢, 41, 4z, ++- , 4, € U, e > 0,
where V., 4,.. consists of all & & U* such that
|®(4,)] < ¢i=1,2, -+, n). A linear form & is
positive if ®(4*4) > Oforall A € W. If A has a
unit I the continuity of ® follows from the positivity
and one has ||®|| = &(I). Positive forms are also
ipso facto continuous for C*-algebras with or without
unit.’” The set of all positive continuous forms on
U (or states on ) is called the positive cone of A*
and denoted by A*‘*’. We will denote by = and
the subsets consisting of all & & U* such that
[|®]] < 1 and ||®|| = 1, respectively (= is the unit
ball of A*). By Tychonov’s theorem A**’ N =
(and %**> M X if A has a unit) are compact subsets
of A* in its weak topology. As a compact convex
set A**) M X has extremal elements and is equal

Ch“ Fi)r the notion of quasi-equivalence, see Mackey, Ref. 54,
ap. I.

57 See C. E. Rickart, Ref. 42, Theorems (4.5.14), (4.5.11),
and (4.8.14).
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to the weak closure of their convex hull (theorem of
Krein-Milman). The state ® € %**’ N X is called
extremal or pure if it cannot be written as A\, ®; + AP,
with &, ® € W'V N E, &, # &, 0 <\ < 1,
A1 + )\2 = 1).

The importance of positive linear forms for
Banach #*-algebras lies in their connection with
*-representations. Each *-representation of a *-
algebra is (by transfinite induction) the direct sum
of *-representations all of which (except the null
representation) are cyclic.”® Now for a Banach
*-algebra with approximate unit, in particular for
a C*-algebra, giving a positive (ipso facto contin-
uous) linear form & amounts to the same thing as
specifying a cyclic representation R and a eyclic
vector £ This representation is irreducible if and
only if ® is pure. Given R and ¢ we have ®(4) =
(¢ |R(4)] ). Conversely, given ®, its null space N
(i.e., the set of elements A & A for which #(4*4)=0
or, equivalently, for which ®(A4*B) = 0 for all
B € %) is a left ideal in ¥ and one recovers con-
sistently the vectors R(A)g, their scalar products
(R(4)¢ | R(B)$), and the operator R(C) acting on
R(A)t by the following identification:

vector R(A)¢ < class (modulo M) of the
algebraic elements 4 4+ N,

(R(B)¢| R(A)) = #(B*4),

R(CYR(A)t > CA + .

scalar product
action of operator

$ is then constructed by completion and the opera-
tor R(C) in the complete £ by continuous extension.
The cyclic vector £ corresponds to I + M if I exists
and is otherwise obtained with the help of an ap-
proximate unity."

It is useful to characterize the relations between
different *-representations of a C*-algebra in terms
of certain subsets of A* determined by their repre-
sentation spaces. Let R be a *-representation of U
on the Hilbert space £z. Given ¥ € £ and
A & U we denote by wy(4) the expectation value
of R(A) in the vector ¥:

wy(4) = (¥| B(4) |¥) = Tr R(A) [¥)(¥|.

We have thus defined a positive form w, on ¥ which
we call the vector state determined by ¥ € OHe.
When ¥ runs through §p, v, runs through a subset

88 A representation R in the space § is called cyclic with
cyclic vector £ € & if the set of vectors R(%) £ is dense in &.

8 This construction is due to I. M. Gelfand and M. A.
Neumark, Isvertija Ser. Mat. 12, 445 (1948); and I. E. Segal,
Bull. Am. Math. Soc. 53, 73 (1947). We call it the GNS con-
struction. See M. A. Neumark, Ref. 42, Chap. IV, Sec.
17.3 or, for the case of an algebra without unit, C. E.
Rickart, Ref. 42, Chap. IV, Sec. 5.
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o(R) of A**’ which can be shown to be uniformly
closed in %*. For cyclic representations w(R) de-
termines B up to unitary equivalence; for two cyclic
representations R and R’ of 9 to be unitarily equiv-
alent, it is necessary and sufficient that w(R) =
o(R’).%*° We now pass from o(R) to its convex hull
conv {o(R)} (i.e., we consider all finite linear com-
binations of its elements with positive coefficients).
If we close this convex hull respectively in the
uniform and in the weak topology of %*, we get two
sets of states conv {@(R)} and conv {w(R)} which
respectively determine R up to quasi-equivalence
and weak equivalence.” The elements of the uni-
form closure conv {w(R)} can be characterized as
the set of states ® of the form

(4) = Tr (Pop- 4) (1)

where &, is any positive linear operator on &, with
finite trace (the norm ||®|| being equal to the trace
of &,,. These states will be referred to as the density
mairices in the representation R. The elements of
conv {w(R)} are correspondingly the density matrices
of finite rank in R. The linear spans of conv {w(R)}
and conv {w(R)} are obtained by taking &, in (21)
to be respectively the operators of the trace class
and of finite rank on .. We will denote them
accordingly by T(¥A, R) and F(A, R). One has
A, R) = conv {e(®R)} and F'N, R) =
conv {w(R)} where * indicates the restriction to
positive elements. Let t*(R), t'(R), t*(R), t*(R)
denote the topologies respectively defined on % by
the strongest, the strong, the o-weak and the weak
topologies of operators on £, (those topologies are
not separating if R is not faithful). (A, R), resp.
FU, R) [T (Y, R), resp. F' (A, R)] can be charac-
terized as the set of linear forms on A (of positive
linear forms on M) continuous with respect to either
t*(R) or t'(R), resp. either t¥(R) or t*(R). So quasi-
equivalence of R and R’ means that t°(R) = t*(R"),
or equivalently t*(R) = t'(R").

Let S and T be two *-representations of the C*-
algebra A, and let Ker (S) and Ker (T) be their
kernels. Fell’s equivalence theorem states that
Ker (8) 2 Ker (T) is equivalent to o(S) C
conv {o(T)}, or alternatively to w(S) N =
conv {o(T) M X} or again to o(S) N X C
conv {w(T) M =}. If this is the case Fell calls S
weakly contained in T. If S and T are weakly con-

-
c

% These results can be inferred from R. V. Kadison,
Trans, Am. Math. Soc. 103, 304 (1962). o(R) € o(R’) means
that R is unitarily equivalent to some subrepresentation of R'.

%t For this characterization of quasi-equivalence, see Z.
Takeda, Tohoku Mat. J. 6, 212 (1954).
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tained in each other they are weakly equivalent
(for us physically equivalent). If S is cyclic with
cyclic vector ¥ it is sufficient for S to be weakly
contained in T that wy € conv {o(T)}. If S and T
are irreducible and S is weakly contained in T
then w(S) is already contained in the weak closure
of o(T).

APPENDIX II. NONSIMPLICITY OF THE FERMION
CURRENT ALGEBRA®

A. Finite-Dimensional Case

Let @ be an n-dimensional metric vector space
over the complex numbers. Corresponding to each
vector z from € we consider two algebraic elements
a*(z) and a(z) (adjoints of each other). They shall
satisfly the commutation relations of creation and
destruction operators in Fermi statistics,

a*(@)aly) + aly)a*(x) = (z, y),
a*(x)a*(y) + a*(y)a*(x) = 0,

and the “creators” a*(x) shall depend linearly on z.
The *-algebra generated by the a* and a will be
denoted by G.* A representation of @ is obtained
(the standard representation in physical applica-
tions) by stipulating that the representation space
(@) shall contain a vector ®, satisfying

a(x)® =0 forall z EE (23)

and that the other vectors of &(E) are obtained
from ®, by application of polynomials of the a*.
From the commutation relations one infers im-
mediately that the space & has 2" dimensions, that
@ has 4" linearly independent elements and is iso-

22)

©2 We are indebted to Professor H. Araki for pointing out
to us the main facts described in this appendix.

& @ is the Clifford algebra over the space & @ € with
respect to the bilinear scalar product
zD 52D =1 {zy)+ W2} zeCyeC.
Here & is the “complex conjugate’” of @; ie., it is
isomorphic to & as an additive group:
zeGo e
but its scalar multiplication reverses the sign of i:

((e +iB)x) = (a — 18)2.
Since (z, y) is Hermitian symmetric the form ¢ is bilinear.
€ can be defined as the quotient of the tensor algebra over
G @ € by an ideal ¥ which is generated by the tensors
EX & —g(E &) with £ ¢ €D L. One has a *(z) = 2@ 0 mod
% and a(y) = 0 @ ¥ mod . By extension of the adjoint

operation
tDjeoydsz

one defines on @ the structure of a *-algebra. Equation (23)
defines a faithful realization of € by the linear operators on
the space £( &) which latter coincides with the Grassmann
algebra over @.

R. HAAG AND D. KASTLER

morphic to the full matrix ring over &. Thus €
is simple.

If I € @ is a product of p creators and ¢ an-
nihilators (in any order) we define the grade of II
to be the difference p — ¢. € thus becomes a graded
algebra whose zero-grade part will be called G,.
@, is represented in & by operators which leave
the homogeneous subspaces @, invariant. (@, is
that subspace which is generated from &, by homo-
geneous polynomials of the a* of order p; p runs
from 0 to n.) Calling R,(G,) the restriction of the
representation of €, to @, one sees by counting
dimensions that the R, are a separating family of
irreducible inequivalent representations of G,. There-
fore @, is a semisimple (but not simple) finite
dimensional algebra. Note that @, can be regarded
as the “‘algebra of currenis’” where the ‘“‘current”
#(K) corresponding to the linear operator K on @
is defined by

i(K) = Zk: (z: |K| za*(z)alz.)

(x; being a complete orthonormal basis of §).

24)

B. Infinite-Dimensional Case

Instead of the finite-dimensional @ we take now
an infinite-dimensional Hilbert space §. For any
finite dimensional subspace & C £ we can consider
the algebra @(@) has previously defined and one
sees easily that for @, DO @, the algebra G(E,) is
is canonically embedded in G(E,) (as a normed
*-g]gebra). Thus we can define €(£) as the com-
pletion of the union of all the §(@) for the finite-
dimensional subspaces & C . The fact that each
G(@) is simple implies that all *-representations of
G(H) are faithful and isometric, i.e.,, that also
G(®) is simple.** '

In the case of a free Dirac field § is the direct
sum of two spaces §, and &, which correspond,
respectively, to the states of a single electron and
to those of a single positron. We are interested now
in the zero grade part of G(§). This algebra @,
may be regarded as the algebra of currents in the
theory of a free Dirac field. We consider the two
familiar irreducible representations of @:

(1) the old-fashioned one which results if we

assume the existence of a state &, satisfying

a(x)®, = 0 forall z € &; (25)

(2) the ‘“‘charge symmetric’ one in which one
assumes a state ¥, satisfying

® Since it is known to have many inequivalent irreducible
representations it is an NGCR-algebra.
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a@@)¥, =0 forall z € &,,
a*(@)¥ =0 forall z € ..

Both representations, restricted to @,, split up
into irreducible parts corresponding to the different
values of the charge. Now in Case 1 none of those
subrepresentations of @, is faithful. In the subspace
corresponding to charge n all operators having more

(26)
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than n annjhilators on the right have zero repre-
sentatives. Thus @, has nontrivial ideals and is
accordingly not simple. On the other hand, in the
charge-symmetric representation of € (Case 2) all
the subrepresentations of @, corresponding to a
fixed value of the charge are faithful. This is an
immediate consequence of the semisimplicity of the
@ (@) for finite-dimensional &.
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