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Abstract. For quantum systems of finitely many particles as well as for boson quantum 
field theories, the classical limit of the expectation values of products of Weyl operators, 
translated in time by the quantum mechanical Hamiltonian and taken in coherent states 
centered in x- and p-space around h-1/2 (coordinates of a point in classical phase space) 
are shown to become the exponentials of coordinate functions of the classical orbit in 
phase space. In the same sense, h-1:2 [(quantum operator) (t) - (classical function) (t)] 
converges to the solution of the linear quantum mechanical system, which is obtained by 
linearizing the non-linear Heisenberg equations of motion around the classical orbit. 

§ 1. Introduction 

Consider the canonical system with the real Hamilton function 

Yg(rc, ~) =TzZ/2m + V(¢) (1.1) 

in the 2f-dimensional phase space ]R 2f  ~ (7~, ~). If grad V = VV is Lipschitz 
around 4, then the canonical equations 

m4(t) = re(t), ~(t) = - grad V(~(t)) (1.2) 

have a unique solution (~(e,t),Tz(c¢, t)) for times Itt <T(c0 (possibly 
0 < T(ct) < co) with the initial data 

(1.3) 

While the classical equations (1.2) have locally unique but globally 
possibly nonexistent solutions (escape to infinity in finite times or 
collisions in the N-body problem), the corresponding quantum mechanical 
problem 

~3/p h 2 
ih - ~ -  (x, t) = - 2---m Atp(x, t) + V(x) tp(x, t) (1.4) 

in LZ(IR :) has always global solutions, if pZ/2m and Vh have a common 
dense domain N and if ~v = ~v(., 0)e N, by taking any selfadjoint exten- 
sion Hh of the real and symmetric operator p2/2m + Vn, Uh(t) = exp(-  iH~ t/h) 
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and tpt = Uh(t)tp. However, these global solutions are not unique, if 
pg/2m + V~ is not essentially self-adjoint on ~.  

The discussion of the connection between (1.2) and (1.4) is as old as 
quantum mechanics (see e.g. [-1-3]). The WKB method relates an 
asymptotic expansion of solutions of (1.4) for h ~ 0  to solutions of the 
Hamilton Jacobi equations for (1.2) [4]. For more than one degree of 
freedom, the mathematical difficulties of this approach are considerable 
[5]. The Feynman integral approach [6] is very suggestive, but also 
difficult in rigorous mathematical terms [7]. The simplest connection 
between quantum and classical mechanics, however, goes back to 
Ehrenfest [8]: For every ~ ~ ~ and V sufficiently regular, 

d 
dt (~t, q~N,) = (~'t, Phil)~ rn 

d (~.5) 
dt (~Pt' Ph~t)= - (~ t ,  VVh~pt) . 

However (1.5) does not define a solution of (1.2) since (~t, VVh~p~) 
:~ VV((~t, q~p~)), unless VV is linear, and even if the error is small for 
some t, it need not be controllable for all t, if h > 0. 

It is a folk-theorem (see [-9, 36]) that (1.5) establishes a rigorous 
transition to (t.2), when h--,0 in minimal uncertainty states for p~ and 
qh, i.e. in coherent states [10] centered around large mean values h-~/zrc, 
h-  1/24- This becomes apparent in the following symmetric representation 
of the CCR: 

p, = ~/hp, q, = l//-hh q, (1.6) 

where p = - i d / d x ,  q = x  and a =(q +ip)/]/~ are h-independent. Let 
e~(E and 

U(~) = exp (c~a* -c~* a )=  exp i(rcq- ~p). (1.7) 

Because of U(e) a U(e)* = a - e, one has in the coherent state le) = U(c010) 
(where a 10) = 0) for an arbitrary monomial in the p's and q's: 

(h-~/2c~t(q-h-1/2~)...(p-h-1/2~z)]h-1/zc~)--=(O]q...ptO), (1.8) 

and hence 

~im(h-~/zc~tq~...p~ih-i/2c~) - -~ . . .~ .  (1.9) 

We shall show that (1.9) (in Weyt form) is preserved under the time 
evolution U~(t) of any selfadjoint extension Hh of p~/2m + Vh: 

~i_mo(h-I/2~]q,(s)...p,(t)lh-1/2~)=~(~,s)...'a(~,t ) , (1.10) 
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as long as the classical orbit exists. The fact, that along coherent states 
the quantum mechanical evolution (h-1/2cclah(t)[h-1/2e)  and the 
classical evolution ~(~, t) = (h-  1/2 a(t) lanl h -  1/2 :¢(t)) are in "weak 
correspondence" (which becomes exact for h-*0) has been analyzed 
by Klauder [9]. But to the best of the present author's knowledge no 
general proof has been given of (1.10), nor has it been recognized that 
also (1.8) is preserved under time-evolution (for the technical details, 
see Theorem 2.1 and [37] for a probabilistic setting): 

lim (h-  1/2 6 ( [h  - 1/2(q~(s) - ~(~, s)).., h ~ 1/2(pn(t ) - rc(c¢ t)) lh-  1/2 ~)  
h ~ 0  

= (01 q(c¢, s)... p(~, t)]0). 
(1.~1) 

Here the q(e, t) and p(c¢ t) are solutions of the linearized classical equa- 
tions (1.2) around ¢(e, t): 

O(e, t) =p(oq t)/m, p(o~, t) = - VV(~(e,  t)) q(c~, t) ,  (1.12) 

with initial conditions q(~, 0) = q, p(e, 0) =p.  Both, (1.10) and (1.11) have 
an easy generalization to more complicated Hamiltonians and to 
relativistic and non-relativistic infinite boson systems. In the latter case 
the compensation of singularities for h --,0, when expanding the quantum 
dynamics around a classical solution, is implicit in the work of Gold- 
stone [11] and Gross [•2], but again a mathematical proof is desirable. 

Our work has been most strongly influenced by the findings of 
Lieb and the author [13] in mean field models, as lasers and strongly 
coupled superconductors, that "intensive" quantities aN(t), i.e. space 

N 

averages N -  1 ~ A, of local observables translated in time by mean field 
n = l  

Hamiltonians, become classical ~_(t) in the limit g - ,  c~ along classical 
states, while the f luctuations ' l /  N (aN( t ) - e ( t ) )  become  boson  operators 
a(c~, t), which follow linearized equations of motion, if in the classical 
states the fluctuations at t = 0 have a limit. We think that the analogy 
between N ~ co and h ~ 0  is significant for the understanding of classical 
operations within the framework of quantum mechanics [•4]. It is the 
pedagogical goal of this paper to elaborate a unified picture of the 
classical limit in quantum mechanical correlation functions, which is so 
simple that it could belong into an elementary course on quantum 
mechanics. 

The author is indebted to M. Fierz, J. Glimm, A. M. Jaffe, J. R. Klauder, B. Kostant and 
J. Lascoux for helpful discussions and bibliographical information and, last but not least, 
to E. It. Lieb whithout whom this paper would never have been written. 
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§ 2. Finitely Many Degrees of Freedom 

The passage to the classical limit in quantum mechanical correlation 
functions can be completely illustrated for the Hamiltonian ~(rc,  ~) 
= rc2/2m + V(~) with only one degree of freedom: 

Theorem 2.1. Let V ( ~) be real and ~(~, t) a solution of (1.2) for It[ < T > 0 
and initial data ct. Let V be C 2+a, ~ >0,  in a neighborhood of ¢(a, t) and 
assume that .[t V(x)l 2 e x p ( -  Ox 2) dx < ~ for some Q < ~ .  Let H~ be any 
selfadjoint extension of 

h d2 /dxZ+V( l /~x )  in L2(IR 1) and U~( t )=exp- iHht /h .  
2m 

Then for all (r, s) e IR 2 and uniformly on compacts in {It t < T}: 

s-lim U(h- 1/2 ~), Uh(t), expi[r(q - h-  1/2 ~(~, t)) + s(p - h-  1/2n(~, t))] 
h-~ O 

• Uh(t) U(h- 1/2 c0 = expi [rq(a, t) + sp(c~, t)], (2.1) 
and 

s-lira U(h- 1/2 a)* U~(t)* exp i[rqh + sp~] U~(t) U(h- 1/2 ~) 
~-,o (2.2) 

= expi[r~(a, t) + sTz(e, t)]. 

Here (p(e, t), q(e, O) are the solutions of (1.2) linearized around ¢(a, t) 
with initial data (t9, q), which arise from the selfadjoint Hamiltonian 

H(t) = p2/2m + V" (~(~, t)) q2/2. (2.3) 

Proof. One expands H~/h around the classical orbit ~(a, t) = ~t: 

Hh/h = H ° (t) + H 1 (t) + H 2 (t) + H 3 (t), (2.4) 

H°(t) = ~t°(~, ~)/h, (2.5) 

H~(t)=~z,(p-h-1/27rt)h-1/2 + V'(~t)(q-h-1/2~t)h-1/2 , (2.6) 

H2(t) = (p - h-  1/2 nt)2/2 + V"(~,) (q - h-  1/2 ¢t)2/2. (2.7) 

t 

The propagator U~(t)= T e x p -  i [  ds H i (s)exists for all It I < T (by the 
o 

unitary extension of its strongly convergent Dyson series on the linear 
hull of all Hermite functions) and defines an automorphism of the Weyl 
algebra: 

U l ( t ) * ( a  # - -  h - 1 / 2 g ~ )  U~(t)=a # -h-1/2c~ ~ . (2.8) 

Hence the Lh.s. of (2A) can be written as 

Wh(t, 0)* exp i[rq + sp] Wh(t, 0), (2.9) 
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where 
w~(t, s) = e ( h -  1/2 ~), t;~ (t)* v~(t - s) tJ~ (s) u ( h - ' / 2  ~) 

, (2.10) 

• expi ~ dr H~(r).  
s 

Hence (2.1) is proved, if on a dense subspace s - l i m W h ( t , s ) = W ( t , s )  
t 

= Texp - .[ dr H(r) holds. 
$ 

The normalized states {lpa(x) = re- t/4 exp - (x - a)2/2Ia e IR} span 
Lz(IR). We claim that for every 0 < k < T there exists some hk > 0, such 
that for all h < hk and all tsl < k, the total set of states 

{~p]~ = U~(s) U(h-1/2~) W(s,O)~pa}cD(p2)c~D(h - 1 V ( V h q )  ) . (2.11) 

For, H(r) is quadratic with V"(~r) continuous in r. Hence the Dyson series 
for W(t,  s) converges for small It - s [  and 

W (s, O) q W (s, 0)* = ~q + tip, 

W (s, O) p W (s, 0)* = ~q + 6p , (2.12) 

A = A ( s ) = ( ~  ~) e Sp(2,IR), 

with continuous dependence on s. Since Wa satisfies [q - a + ip] ~p~ --0, 

0 = U~(s) U(h-  1/2c 0 W(s, O) [q - a + ip] ~p, 
(2.13) 

= [(a + i~) (q -- h -  1/2 ~)  _ a + i(b - ifi) (p - h -  1/2 rc~)] ns lPa , 

or  

tP~(x)=c°nstexp 2(,5-ifl) x - h  ~ ( a + i 7 )  +iTzsh-1/2x"  

(2.i4) 

Since Re(a + i~)/(6 - ifl) 2 = 1/2(6 2 + f12) > t/k > 0 for all Is I < k, and since 
~ d x [ V ( x ) 1 2 e x p - o x 2 < ~  for some ~ < ~ ,  one obtains (2,11) for 
h k = 2t/z/Q. 

Therefore W~(t, s) W(s,  r) q~ is strongly differentiable with respect to s, 
if 0 < k < T, tsl, ttl_-< k and if h < hk, for any selfadjoint extension H~ of 
p2/2m + Vn. We obtain the Duhamel formula 

d 
W(t ,O) Ip , -W, ( t ,O)~p~= !dS-~s  Wh(t, slW(s,O)~pa, (2.15) 

d W,(t, s) W(s, O) ~p, = iW,(t, s) {h -1 V(¢s + ]/~q) 
ds 

(2.16) 
- h-  1 V(~) - h-  1/2 W(~3 q - V"(~s) q2/2} W(s, O) tPa. 
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The norm of (2.16) will be estimated as follows: There exists some a > 0, 
such that V({~ + x) is C 2 +a for all Isl __< k and [x I < a. We consider 

,f d x  ]h - 1  v ( g s  + 1~fix) - h - ~ v ( ¢ 3  - h -  ' /2 v % )  x - v " (~O x2/21 = 
(2.17) 

-t(w(s, 0) 9°) (x)?.  

In {lxl >_ h-1/2a}, each term is O(h N) for every N, since [V(¢s + ]/hx)[ 2 
increases at infinity at most as exphQx 2, while I(W(s, 0) tp.) (x)[ 2 decreases 
as exp -2~/kx 2. On the other hand, for Ix] < h-1/2 a, one uses the H61der 
continuity of V" (6 =< 1): 

lh-1 V(~s _~ V ~ x )  _ ~ - i  V (~s ) _ ~ -  1/2 v,(¢s) x - v"(¢s)  x2/2[ 
1 (2.18) 

<__ x 2 ~f a y(1 - y) l V" ( { , + l ~  x y) - V" ( { ,)  1 < c o n s t x  2 +a ha~2. 
0 

II w(t,  0) v:° - w~(t, 0) v:oll = o(h ~/2) leads to (2.1). By the s a m e  Hence 
argument 

[1S(h- 1/2 ~), g~(t)* e~trq. + sp~l g~(t) g(h -  1/2 cO ~ - e~t'et+s=@ll 
(2.19) 

= II W~(t, 0)* exp i|/:h(rq + sp) W~(t, O) V - tplt- 

Since s-lim Wh(t, 0) = W (t, 0) and s-lim exp i Vh(r q + sp) = 11, (2.2) follows. 
Q.E.D. 

Remark. It is helpful for the interpretation of Theorem 2.1 to note the 
analogy to time dependent scattering theory [15] between 

lim l] U~(t) U(h-1/2o:),p- U(h-1/2o:t) W(t, O),pl ] = 0  (2.20) 
h~O 

and 
li+m Item'O_ ~-eiU°ttplI = 0 .  (2.21) 

If ~p is Gaussian, then also U(li- 1/2e) ,# and U(h- 1/2e,) W(t, O) lp, and 
(2.20) shows that under the time evolution Un(t) the difference of 
U~(t) U(h-*/2oO ~p from a Gaussian wave packet centered around the 
classical orbit and with the shape wobbling according to the quadratic 
Hamiltonian of the linearized theory goes to zero, as h--+0. 

The error in (2.2) between Gaussian wave packets can be reduced 
to O(l/h ) uniformly for bounded time intervals, if {(c(, t) exists for all t 
and if V is C 3 in a neighborhood of this orbit. Hence the Ehrenfest 
theorem describes well the classical aspects of the motion of wave 
packets for finite times, but not for t-+ oo. Our method is complementary 
to the WKB-method, which is successful for describing the stationary 
states in quantum mechanics. 

One learns from Theorem 2.1 that equilibrium points (rCo, {o) of the 
classical motion, r% = 0  and V'({o)=0, are driven by the quantum 
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fluctuations in O(]fh): If V"(~o)>0, then (2.3) leads to an oscillatory 
behavior of Ap 2 and Aq 2 in any wave packet qJt- For  V"(4o)<0 the 
spectrum of (2.3) is purely continuous and the wave packets spread, 
for V"(¢o) = 0 with a power law and exponentially fast for V"(¢o) < 0. 

A slight modification of the kinematics leads to the classical limit for 
heavy particles, if 2 = him---, 0 in Hamiltonians 

fft°(~, 4) = ~zZ/2m + m V(¢) . (2.22) 

Corollary 2.2. Consider (2.22) (under the same assumptions on V as in 
Theorem 2.1) around the solution ~(t) of  the classical equation 
~'(t) = -- V'(~(t)) with initial data e = (4(0) + i~(0))/1/2. Le t  

pa=m]/ /2p ,  q~= ]//2q, (2.23) 

and let H~h -1 be any seIfadjoint extension of  p2 /2+2  -1 v ( V 2 q )  with 
uz(t) = exp - iHx t/h. Then 

s-lim U* (2-1/2 c~) [~(t)* expi[r(q - ).- 1/2 ~r) + s(p - 2-1/2 4t)] 
~ o  (2.24) 

• Uz(t) U(2-1/2 c¢) = exp i[rq(t) + sp(t)-], 

s-lira U(2-1/2c0" Ux(t)* expi[rqz  + sp~/m] U~(t) U(2-1/2~) 
) ~ 0  

= expi[r4~ + s~t], 

where O(t) -- p(t), f)(t) = - V"(4t) q(t), q(O) = q, p(O) = p. 

For  N-particle Hamiltonians of the type 

(2.25) 

~ ( r c , ~ ) =  ~ , -  T A ( ¢ , , t )  / 2 M , + V ( 4 ,  t) (2.26) 

with nontrivial time-dependence, we have to assume the tbllowing 
regularity property: 

(R): There exists a propagator U~(t, s) which is strongly continuous 
for - oo < s, t < + oo with U~(t, s) Uh(s, r) = U~(t, r), U~(t, s)* = Uh(s, t) and 
U~(t, t) =/L For  some ~ < oo and all Gauss packets with 

supl~(x) expo Ilxl]~t < oo, 
s- l imhr-  1 [U~(t, s + r) - U~(t, s)] tp = i Uh(t, s) H~(s) ~p, 

r-~O 

where H~(s) ¢p is naturally defined as partial differential operator. 

(2.27) 

Theorem 2.3. For N-body systems (2.26) with A and V satisfyin 9 (R), 
a 9eneralized Ehrenfest theorem of  the type (2.1), (2.2) holds along every 
classical orbit ~(t), in the neighborhood of  which A and V are C 2 + 8, (~ > O. 
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In the classical limit, there is no difference between the coherent and 
incoherent superposition of states of the type U(h- ~/2 ~,) (p, [with c~, e ~ f  
and (Pn~L2(lpxf)], if Ztlq~,l!2 = 1 and e,, +c~, for m@n: For all (r,s)~lR 2 
and It[ < min T(e,) and 

~imo (tV~, Uh(t)* d trq'+ ~,.1U(t) tp~) 

= limTr(P~ U~(t)* e it~q.+~p'~ Uh(t)) (2.28) 

= Z [IcP, II 2 e x p i [ r ~ ( e . ,  t) + s~(e , ,  t ) ] .  
n 

This is important for fermions or bosons, where the (anti-)symmetriza- 
tion of spatial wave functions of the type U(h-~/2~)~o usually leads to a 
classical ensemble in phase space with discrete density. Classical ensembles 
with continuous densities q(~, 4) > 0, .[ du d~ q(u, 4) = 1 can obviously 
be reached from any density matrix P, by forming 

Ph = ~ drc d~ Q(r~. 4) U(h- 1/2 ~) p U(h- 1/2 cO* 

and by passing to the limit as in (2.27) for tt I < min T(~). 
A classical problem is the limit h ~ 0 and the related high temperature 

expansion in statistical mechanics [16, 17]: 

l imh:Tr e -~Hh = .( d~ d~ e -~xe(' '°  , (2.29) 
h---, 0 

lim Tr (e - ~ H. p~. q~)/Tr e- ~ n. 
h--,O 

= 5du d{ e-~av("'e)r:{"/.fdrc d{ e -~ar(='¢) . 
(2.30) 

For finite f ,  (2.29) has been proved by Berezin [18] for a large class of 
Hamiltonians. In [19] the limit (2.30) of the correlation functions was 
considered for finitely many harmonic oscillators compled linearly to 
large systems of multilevel atoms. This method can be generalized to 
N-particle systems in an anharmonic oszillator well and interacting via 
regular short range two-body potentials. 

Finally let us remark that there exist coherent states on a large class 
of Lie groups [20], which allow the passage to the classical limit for 
dynamical systems with more exotic phase spaces than 1112: [21-23]. 
One example, lR2x SU2, with "atomic" coherent states [24, 25] for 
SU2, is important in the thermodynamic limit of the laser [t3]. 
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§ 3. Boson Systems of Infmitely Many Degrees of Freedom 

Some of the results of the preceeding section can be generalized to 
systems with infinitely many degrees of freedom. 

The best understood models for a relativistic quantum dynamics are 
the scalar boson theories in two dimensional space time with polynomial 
interaction (see e.g. [26]). Let ~(x), x ~ 1R 1, be the free boson field of mass 
m > 0  at t = 0 ,  Ho(m 2) the corresponding free Hamiltonian and 
II(x) = i[Ho, ~(x)] in Fock space ~ with [~/i(x), (/i(y)] = [H(x) , / / (y)]  = 0 
and [~6(x),//(y)] = i 6(x - y). Let ~ ( f )  = ~dx f (x)  4)(x) for f e  @(IR1). 
For  every c~e@(IR 1) with the decomposition e(x)=(q)(x)+irc(x))/[/~ 
into real and imaginary part, the shift operator U(e) satisfies 

U(cO = exp i [,~(rc) - H(fp)], (3.1) 

u(co* : ~(x)m: u(oo = :(,~(x) + ~o(x))m: 

u(~)* :n(x)  m" U(~) : :(n(x) + ~(x))~: 
(3.2) 

U(oO* Ho U(oO = Ho + j" dx {~(x) n(x) + V,p Va,(x) 

+ m 2 ~o(x) ~(x)}  + ~o(~)  

where ~o(e)  is the classical energy of the free field ([~ +m z) ~o(x, t ) = 0  
with Cauchy data e, and • • is the Wick ordering w.r.t, the free vacuum. 

For  Cauchy data c~ s @(IR1), the classical nonlinear real wave equation 

N 

([2 + m2) q)(cq t, x) + ~ na, q)(c~, t, x) '-  l =O (3.3) 
. : 1  

has for finite times, Itl < r (~ )>0 ,  a unique smooth solution with pro- 
pagation speed 1 (see [27-29]), where T(c0 = oe for N even and a N > 0. 
These solutions will be compared with the quantum solutions of 

N 

([] + m z) ~ ( t ,  x) + ~ na, : ~O~(t, x)"- 1. (3.4) 
. = 1  

with ~ (0 ,  x) = ~bn(x) = l / ~ ( x ) , / ' / n ( 0 ,  x) = l-lh(x ) = V~II(x),  which have 
been constructed by Glimm and Jaffe [26] for N even and a N > 0. 

Let r > 0 and 0 < g, e N(1R~) with g~(x) = 1 for Ix] < r. Let Hn, be any 
self-adjoint extension of hH o + V~(g~) from O(Ho)c~ D(Vn(gr)), where 

N 

V~(g,) = ~ a,,(dx g~(x) : ~ ( x ) : .  (3,5) 
. = 1  

Let U~,(t) = exp -itH**/h. On D(Ho)c~ D(Va(g~)) the generator of Uh~(t) is 

" ~ - 1  

Ho+ ~. a,h .[dxg~(x):~(x)":. (3.6) 
n = l  
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Theorem 3.1.Let cc e ~ (IR t ) and (p(cc, t, x) exist for tt[ < Z Let f , ge ~ (IR 1) 
be real and r be sufficiently large. Then 

s-lim U(h- 1/2 a)* Uhr(t)* exp i [ (~ ( f )  -- h-  1/2 q)(e, t, f ) )  
h ~ O  

+ ( a ( g )  - h -  ~/~ rc(o~, t, a))]  G~(t) U(h- ~/~ ~) 

= expi[~(a,  t , f )  + H(c¢, t, g)], 

(3.7) 

s-lim U(h- 1/2 e),  U~r(t)* exp i[~h(f)  + Ha(g)] Uh¢(t ) U(h-  1/2 c0 
h~o (3.8) 

= expi[~o(c¢ t , f )  + n(~, t, g)], 

where cp(~, t , f )  = .fdx f ( x )  (p(~, t, x), ~(0~, t , f ) =  .fdx f ( x )  ~(c~, t, x), and 
where the q~(o~, t, x) and H(~, t, x) = ~(o:, t, x) are the unique global solutions 
of  (3.3) Iinearized around cp(~, t, x): 

N 

O = ( D + m 2 ) ~ ( ~ , t , x ) +  ~ n(n-1)a, ,~o(~,t ,x)n-2~(c~,t ,x)  (3.9) 
t1=2 

with initial conditions ~(x), H(x) at t = O. 

Proof. The proof of Theorem 2.1 applies with few changes. (3.6) is 
developed around ~0(~, t, x) in an obvious way. Again 

Hr( t )=H°+ 2 a".fdxg'(x)cP(~'t'x)"-2:q~(x)2: (3.10) 
n=2 

has a propagator W,(t, s), which generates (3.9) for r sufficiently large, 
~l~;(t, s) has for small it - sl a controllable action on ~-o, the subspace of 
finite particle states with momentum space wave functions of compact 
support, by its convergent Dyson expansion. Here one easily sees that 
s-lim W~r(t, s) tp = Wr(t, s) ~p for h ~ 0 ,  It - s  I small, using the Duhamel 
formula. Hence, using unitarity and the composition law, 

W~(t, u) W~(u, s) = W~(t, s), s-lim Wh,(t, s) = Wr(t, s) 

for all Isl, ttt < T. Q E D  
Remark that by the Wick reordering automorphism one can transfer 

mass from Ho to V. In the translation to the classical limit the coefficients 
in (3.6) are h-dependent and make that only the unique highest order term 
in the transition from ~(x 1)... ~b(xn) to a Wick product i ~(x) ~ ! contributes 
in the limit h--, 0. 

The classical limit in Theorem 3.1, which in perturbation theory 
corresponds to the sum over all tree graphs (see e.g. [30]), gives a rigorous 
meaning to the Goldstone picture [1 l] as the leading asymptotic term 
in an expansion in ]//h. The O(Vh)-correction gives an interesting 
instability, whenever the classical field equations have a non-zero 
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stationary solution q~o, e.g. for 2a 2 < - r n  2, a 4 > 0  and a, = 0  for n # 2, 4. 
In this case, (3.10) with c~(x)= q ) o / ~  = -4--(- 2 a 2 -  m2)l/z(24a4) - 1/2 for 
[x[<r is locally equivalent to H 0 ( - 4 a  2 - 2 m  2) with positive mass 
elementary excitations, while for the unstable stationary state ~o(x, t ) -  0 
one has local equivalence to Ho(m - 2a2) with purely imaginary mass. 

In more than 2-dimensional space-time, the renormalized local 
Hamiltonians for ~ [3 t] and q~ [32] are for h > 0 defined in non-Fock 
representations of the CCR. Perturbation theory indicates that the 
classical limit is again of the structure of Theorem 3.1. In ~ one can 
introduce an ultraviolet cut-off at lk[ < ~c= consth -1/3 and obtain the 
classical limit without any renormalization. 

In non-relativistic many-body theory, the classical limit for bosons 
with the second quantized Hamiltonian (in Fock space over L2(IR3)) 

h z 
H~ = - 2-m "[ dx a* (x) A a(x) 

+ ½~dx dy a*(x) a*(y) V(x - y) a(x) a(y) (3.11) 

[a(x), a(y)] = 0, [a(x), a*(y)] = 6(x - y), 

has been discussed by Gross [12] as the first step in a series of canonical 
transformations for diagonalizing H~ in the thermodynamic limit. 

We shall assume V(x) = V ( -  x) = V(x)* to be a Kato potential [15] 
and ~V/3xi, ~?21//~x~xj to be -A-bounded.  By a fixed-point argument 
one can show that for every initial condition fleD(A) there exists a 
unique solution of the classical non-linear wave equation 

Oc~ i 
(fl, t ,x)=--2~Ae(fl ,  t ,x)+i( .dy V(x-y)lc~(fl, r,y)12e(t3, t ,x),  (3.t2) & 

with c~(fl, t , . )eV(A) for [ t l < T > 0  and e(fl ,0, .)=fl .  Furthermore, H~ 
is essentially self-adjoint on Y0. Let [] s D(A), ae([:l) = .[dxfl(x)ae(x) and 
U(fl) = exp[a*( f l ) -  a(fl*)]. In an almost coherent state U(h-1/2fl) q), 
(P e ~o,  the particle number is O(h-1) for h ~ 0 .  However, h-~H~ is not 
extensive, as in Theorem 3.1, since h -1Hon = O(1) and h-lV~ = O(h -3) 
for h - ,0 .  A non-trivial classical limit can be obtained by setting m = h3#, 
t = h 2 z and by keeping # > 0 and z fixed. This leads to Uh(z) = exp - iKnz 
= exp - iHnt/h, where 

1 , h 
K h = - -ffi,ldxa (x)A a(x) + ~.~ dx dy a*(x) a*O,) V(x - y)a(x)a(y). (3.13) 

For  7sL2(1R 3) we set ~e(fl, t, 7)=IdxT(x)e*(fl,  t,x) and ae(fl, t, 7) 
= ~ dx 7(x)a ~ (fl, t, x), where a(fl, t, x) are the solutions of the linearization 
of (3.12) around e(t, fl, x) with initial data a(x). Furthermore, let 
a,(x) = V~a(x). Then 
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Theorem 3.2. Under the above assumptions one has for tz{ < T: 

s-lim U(h- 1/2/~), U~(v)* exp [(a*(7) - h-  1/2 c~* (/?, z, ~)) - h.c.] 
h~O 

• Uh(z ) U(h-1 / z t~  ) (3.14) 

= exp [a*(/~, ~, ?) - a(/~, ~, 7")] ,  

s-lim U(h- 1/z/~), U~(r)* exp [a~(7) - an(?*)] Un(z) U(h- 1/2~) 
n-,0 (3.15) 

= exp [c~* (/L ~, 7) - c~(/?, ~, 7*)]- 

Proof. As in Theorem 3.1 one proves s-limWn(t,s),p=W(t,s)lp 
first for ,p e ~'o, by using the Dyson series for W(t, s) and the Duhamel 
formula for small I t -  s I. 

It is amusing but not surprising that the classical limit is not unique: 
in coherent states centered around h-1/z(c~l . . . . .  ~N) with fkned N, one 
obtains the classical mechanics of N mass points by Theorem 2.1, while 
in boson coherent states centered in Fock space around a classical field 
h-  ~/2 e(x) one obtains a classical field theory, if m ~ h a and t ~ h 2. 

The transition from the quantum to the classical correlation func- 
tions in Gibbs states in the thermodynamical limit is presently only 
understood for small activities, where the Kirkwood Salsburg equations 
have a unique solution (see [33-34],  and [35] for the diagrammatic 
analysis). 

§ 4. Conclusion 

The main objective of this paper was to give a Simple and mathemati- 
cally rigorous discussion of the classical limit in quantum mechanics. 
We hope that our construction can sometimes be used as a reliable 
starting point for understanding some of the intriguing features of infinite 
quantum systems, as for the boson condensation and the appearance of 
broken symmetries. 
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