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A definition of strict localization of states in quantum field theory is presented. This definition is based
on considering products of field operators as the primary measurable quantities of the theory. An example
of a localized state is given, showing that such a state arises when a free field interacts with an external
current that is limited to a bounded region of space-time. It is shown by means of a graphical technique
that a state having a finite number of particles cannot satisfy the definition of localization. A simple repre-
sentation of localized states is investigated, and arguments are given to support its generality and uniqueness.

1. INTRODUCTION

HE research in quantum field theory of the past
ten years has centered chiefly about the analytic
properties of various quantities appearing in the theory.!
These properties are derived from very general charac-
teristics of the fields stated in the form of postulates
which it is believed that any complete theory must
satisfy. It is not altogether clear, however, that these
postulates, as formulated for example by Wightman,?
form a consistent system, or that they form a minimal
basis from which the analytic properties follow. It is,
therefore, of great interest at the present time to carry
out investigations having for their ultimate aim the
clarification of these postulates.

The earliest derivations of analytic properties for
relativistic field theories were based on the finite prop-
agation velocity of wave disturbances, and took into
consideration the scattering of initially separated
localized wave packets.® These packets propagate

* Work supported by the National Science Foundation and the
U. S. Air Force Office of Scientific Research. This paper is based
on a dissertation submitted to the faculty of the University of
(IivIaryla.nd in partial fulfillment of the requirements for a Ph.D.
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! For a review of this work, see for example, the account of the
Verenna course on mathematical problems of the quantum theory
of fields, published in Nuovo cimento 14, Suppl. (1959).

2A. S. Wightman, Phys. Rev. 101, 860 (1956), and Ecole
Normale Lecture Notes (1957).

2 J. S. Toll, thesis, Princeton University (1952), and Phys. Rev.
104, 1760 (1957); N. G. van Kampen, sbid. 89, 1073 (1953); 91,
1267 (1953).

towards one another with finite velocity and interact,
giving rise to scattered waves. The condition that no
scattered waves appear before the initial wave packets
have had time to collide is then sufficient to give analytic
properties for the scattering amplitude as a function of
the wave number .

In later derivations of analytic properties, carried
out in the formalism of quantum field theory, the prin-
ciple of finite propagation velocity was replaced by the
condition of local commutativity of the field operators
at space-like separations,® together with certain other
postulates such as the asymptotic condition. This latter
condition is an expression of the circumstance that
particles involved in a scattering process behave as
separated and noninteracting at times in the distant
past and future before and after the scattering has
taken place. It thus replaces the wave-packet descrip-
tion of the scattering process used in earlier derivations.
The recent work of Haag® has gone far in clarifying the
status of the asymptotic condition, although it is still
not clear in precisely what form this condition is
satisfied.

It is clear that the question of localization of states
is fundamental to the above considerations. To gain an

* M. Gell-Mann, M. L. Goldberger, and W. E. Thirring, Phys.
Rev. 91, 1612 (1954).

® R. Haag, Les Problémes Mathématique de la Théorie Quantique
des Champs (Lille, 1957); Phys. Rev. 112, 669 (1958), and the
article cited in reference 1. See also D. Kastler, Compt. rend.
acad. sci. Paris 245, 2021 (1957).
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idea of what localization means, one must have an idea
of the significance of the measuring process. Newton and
Wigner took up the question of localization from the
point of view of position measurements of a particle.®
They set up postulates from which the position eigen-
states of a particle could be determined. Their postu-
lates were based on the quantum theoretical description
of a measuring process and upon relativistic invariance
of the wave function describing the particle. In order
that the position measurement have meaning, eigen-
states corresponding to different spatial positions at a
fixed time must be orthogonal. This condition is suffi-
cient to determine the position eigenstates completely.
However, the definition of localization implied by these
position eigenstates is found not to be preserved in time,
i.e., a particle localized at a point at one time will be
spread over all space, even outside the light cone of the
initial point, at later times. Furthermore, a particle
localized in one Lorentz frame is not necessarily localized
in another. These rather unsatisfactory features of the
results of Newton and Wigner make it difficult to see
how a suitable concept of localization of particles may
be defined in relativistic field theory.

Haag? has discussed the asymptotic condition in field
theory by means of a definition of localization in which
two states are localized if they become orthogonal as
the space-like separation of their respective regions of
localization becomes infinite. This definition is less
restrictive than the one adopted in this paper, which is
based on strict localization of a state determined by
measurement.

A basic treatment of measurements in field theory
was given by Bohr and Rosenfeld,” who showed that
averages of the field variables over space-time regions
may be taken as the basic measurable quantities of the
theory. This view seems appropriate also to the recent
postulational developments of field theory, where
vacuum expectation values of certain combinations of
field variables are treated as fundamental.

The definition of localization given in Sec. 2 is based
upon taking products of field operators, instead of par-
ticle observables, as the basic measurable quantities.
The remainder of the paper is devoted to an analysis of
the definition and a discussion of some of the properties
of the states satisfying the definition.

2. DEFINITION OF LOCALIZATION

In this section, we present and discuss the definition
of localization that forms the basis of this paper. We
take the point of view that the basic measurable quan-
tities of the theory are products of field variables 4 (x).
By this we mean that any observable quantity Q shall
be expressible in the following form as sums of integrals

(1; fg) G. Newton and E. P. Wigner, Revs. Modern Phys. 21, 400
7 N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,
Mat.-fys. Medd. 12, No. 8 (1933), and Phys. Rev. 78, 794 (1950).
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of such products:

O=gqut f dasga (1) A (1) + f f dacrdaisga (s1,3)

XA (@)A (x)+---, (1)

g: being c-number functions of their space-time argu-
ments.® The expectation value of Q in any state |¢)
can then be written in terms of the quantities

<\Ir1_1jl A) | %)

in a form similar to (1). We wish to formulate the con-
dition that |¥) represent a state of the field which is
strictly localized in a region U of space-time. If the
phenomena described by and the field quantity 4 (x)
are confined to U, it should not be possible to detect the
presence of any field disturbance by making measure-
ments at points outside of U. In other words, such
measurements should lead to the same results whether
the state of the system is |¥) or the vacuum state |0).
Taking into consideration the nature of the measurable
quantities (1), we arrive at the following definition:

Definition of localization. A state |¥) of a field 4 (x) is
localized in the region U if

mﬁA<xi>l\1f>=<01_1:IlA<xoio>, n=1,2,, (2)

i=]

for any product of field operators taken at points x;
all of which lie outside of U.

If there is more than one independent field in the
theory, the definition may be extended to include all
possible products of any combination of the fields. The
definition is meant to apply to fields satisfying the
Bose-Einstein statistics. For Fermi-Dirac fields, the
measurable quantities are bilinear expressibns® in the
field operators, such as charge and current densities,
and the definition must be modified accordingly. We
have limited our investigation to the case of a single
field satisfying Bose-Einstein statistics. This case
contains the essential elements of the problem, and an
extension to other cases should not present any dif-
ficulties. :

For the most part, the analysis that follows is carried
out for the case of free fields. The definition, however,
is not so restricted, and it is pointed out explicitly
wherever our arguments clearly have more general
validity. We do not consider the limitations to free
fields to be a very serious one, since we are interested
in localized states primarily as initial and final states in
scattering processes. We expect that in such cases the
particles involved in the process are far separated and
are therefore describable by free fields.

8 Four-dimensional integrals will be denoted by the symbol dx,

three-dimensional integrals by dx.
® N. Bohr and L. Rosenfeld, Phys. Rev. 78, 794 (1950).
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It is possible to make a statement about the nature
of the region U in which a state may be localized without
entering into the details of the structure of the state
itself. We note that the quantity

\r(xx,---,xn>=<\1v|£IlA(xi>IW>—<or§A<xf>10>

is a solution of the free field equation in each of its
arguments independently. It follows from this that if
f(x) is an arbitrary solution of the Klein-Gordon
equation vanishing sufficiently rapidly for large spatial
separations at a given time, then the expression

] 0 1
f da’“(f () -y L
zo=t axm 6

is independent of ¢ for fixed s, * -+, x,. This makes it
clear that if ¥(xy,- - -,%») is not identically zero, it must
be nonvanishing in some region of space at any given
time. Since (2) requires ¥ (xi, - -,&,) to vanish outside
U, this means that U cannot be bounded in the time-like
direction.

The actual form of the region of localization may be
also inferred from similar considerations. The solution
¥ (x)=(¥|4(x)| ¥)— (0] A (x)|0) of the Klein-Gordon
equation may be expressed in terms of its initial values
on a surface xo=1¢ as follows:

v (x) dA(x—x )\If(x'))

9% dxo

V(o x))

X10

V(x)=— d%c(A(x—x’)
zo=t

by means of the singular function A(x—2).° If at a
time £, ¥(x) and ¥ (x)/dx, are confined to a region &
of space, then ¥(x) for arbitrary times will be confined
to the region V. (®) consisting of & together with the
interiors of all the forward and backward light cones
with vertices in ®. This is clear from the property that
the A function vanishes for space-like argument. Note
that ® may be taken as any bounded space-time region
instead of a space-like surface without changing the
manifold of possible regions of localization.

3. FIELD INTERACTING WITH CLASSICAL
CURRENT DISTRIBUTION

To provide an example of a localized state, we con-
sider the interaction of a field ¢(x) with a classical
current distribution j(x). The equation of motion for
¢ (x) is"

(O—mg(x)=— j(x).

We may express ¢(x) as follows in terms of free fields

$in(%) and Pous(x)

10 See, for example, G. Kallén’s article in Handbuch der Physik
(Springer-Verlag, Berlin, Germany, 1958), Vol. V, Part 1.

1t See, for example, Killén’s article on quantum electrodynamics
(reference 10).
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(%)= pin(x)+ f An(r—2') ()"
=¢out(x) +fAA (x— x’) j(x’)dx’,

Gowt =G in(2) — f Ar— o) ()t

We may now introduce two complete sets of states,
obtained from the in and out fields, respectively. Each
of these sets may be labeled by the eigenvalues of the
number operators and the momentum operators.
Because of the action of the current j(x), the particle
configuration will change with time so that at large
times there will be a different configuration, represented
as some linear combination of the outgoing states. For
example,* if the state of the system is [0jy), i.e., no
particles initially, then an emission of quanta will take
place such that the probability of finding » outgoing
quanta is the state of momentum k is given by the
Poisson law

wa (k)= (n) 7 ((n(k)))" exp(— (n(k))),

where (n(k)), the average number of particles of
momentum k, is proportional to the quantity | 7(k,w)|(?,
where w= - (k?+m?)?, and j(k,w) is the Fourier trans-
form of j(x). Note that the outgoing configuration
depends only on those components of the Fourier
transform which satisfy k?—«?= —m?, and not on com-
ponents off the mass shell. We shall refer to this fact
in Sec. 5.
We now make the following identification:

| (x)=¢out(x);
IO>: [Oﬂut>)
I\I,>= loin>.

We will now show that, if j(x)=0 outside of the space-
time region ®, then |¥) is a localized state of the field
A(x) in Vo(®) by definition (2). We evaluate the
quantity

@[T A(x)| %)

i=1

=(0'm|_II1 Pout (%) | Oin)

=<omu"1(¢m<x.f)— Il dxi'A<xi—xi'>j<xi'>)(om>

i=1

= (01| TT $1n(x2) | 0u)

=1

~2 §dx/Alx;—x))j(xi)

=1

XOm| TI ¢u@)|0w+--. )

iFEj=l
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The first term is the vacuum expectation value of a
product of free fields, and is thus equal to

<oout11:;l¢out<xi>lom>=<ouj1A(xmo).

The remaining terms on the right each contain as a
factor a quantity [fdxi/A(x;—=x;)7(x;) for some x;.
This quantity vanishes unless ;& V_.(®). Therefore, all
of the terms on the right vanish except the first term
when all x; lie outside V.(®). For this case, we obtain

<WII="IIA<x1-)IW>=<OI,I:IIA<xi)|0>,

which is just (2).

The states (3) are thus localized states if the generat-
ing current operates in a confined region of space-time.
They may be thought of as representatives of the type
of state which occurs in a physical scattering process.
The field of the apparatus which produces and acceler-
ates the particles to be scattered is the external field
J{=x). The particles then propagate from the region of
production according to the free equations of motion.
The apparatus for detecting scattered particles may
also be thought of as an arrangement of fields and
currents located in a bounded region of space-time.
In the theoretical treatment of the scattering of fields,
the initial and final states are usually idealized to one-
particle states of definite momentum. Such states are
not localized, and cannot be produced by apparatus
confined to a bounded region of space-time. The local-
ization associated with production and detection is
accounted for in single-particle scattering theory by
using a wave-packet description of initial and final
states. It is in this sense that the localized states defined
here provide a certain field theoretic analog of the
wave-packet description.

4. LOCALIZED STATES IN TERMS OF NUMBER
AND MOMENTUM EIGENFUNCTIONS

Having found that localized states may be generated
by an external source interacting with the field within
a bounded domain of space-time, we pass on to a further
analysis of the structure of states satisfying the criterion
of localization (2). For this purpose, we consider an
expansion of the states in terms of the complete set
associated with the momentum and number operators.
Such an expansion has the form

=3 5 V-l ) |y k), (4)

n=0 K1.+-%n

in which |ky---,k.) denotes a state containing #
particles of momenta %y, « - -, k., and ¥V denotes a finite
volume of enclosure. This expansion is always possible
for states of a free field. The four-vectors k; must satisfy
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the conditions

ki=k2—ki*=—m?, k>0, )

the first in virtue of the field equations, and the second
because of the physical requirement that the particles
have positive energy. In addition, the coefficient
Yn(ky," - ,k,) must be symmetric in all its arguments
in order to satisfy the Pauli principle. The states
| k1, + +,kn) appearing in the expansion (4) may be
obtained by applying the creation operators af(%) to
the vacuum. They satisfy the normalization condition

<k17' T ’kﬂl kl’, Tt ,k,,/)
=5nm Z 6(k1—kill) o 'a(k"—kiﬂ)’ (6)

P(3)

the sum being taken over all permutations of the
indices labelling the £’

We retain the normalization (6) even in the case
where two or more of the % are equal in order not to be
forced to take these states into account separately in
the calculations. This differs from the usual normali-
zation by a factor [II(n;!) J1 if #y, ns, etc., k’s are equal.
In order to avoid singularities from these states because
of products of 8 functions with equal arguments appear-
ing in (6), we have enclosed the system in a finite spatial
volume V. Then the allowable values of £ form a
discrete manifold over which the summation in (4) is
taken. The 8 functions on the right of (6) are then to be
interpreted as Kronecker symbols instead of Dirac
& functions. It may be shown that the quantities ¢, are
independent of ¥V when we are dealing with localized
states. In the final expressions for expectation values
of products of fields, the volume may be taken infinite
without these singularities reappearing, and we may
then replace the summations by integrations:

§= f (&n/ k)= [V/(2m)*] f k.

We have already introduced the creation operators
a'(k), in terms of which the field operator may be given
as follows:

1
Alx)=
® ‘? uwV)}

kx=k-x—wx), w=k-+m?)i

[a(k)eikz+01‘ (k)e—ilcz:]

The normalization is chosen so that
[a(k),a’(B)]=8(k—K').

The quantities ¥(wy,- - *,%,) = (V14 (#1)- - -4 (w.) | ¥)
—{0] A (%1)- - - 4 (x,)]0) must vanish outside of a region
Vo (®) if (2) is to be satisfied. We wish to express this
condition in terms of the Y. (ky,- - -,k,). This is greatly
facilitated by the introduction of a graphical method of
representating the matrix elements involved. From (4)
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P . q
Fc. 1. P ——
! =it
12350
we obtain
|¥)= Z Z V‘””‘Pu(kl,'“,kn)a*(k:)'“a*(kn)|0>
—Z Z V'”’z'ﬁ (k1 -+ kn) (27010« ~w V)
n=0 k1,
xf fd3xl d3x ezkx:c1+ st iknzn
XA (1) - - A (x,)]0).

A (x) is the creation part of the field operator A (x):

A ()= Z

( " )*af (k)e" ik

We also list the following for future reference:
AP (x)=A4Mz), A(x)=AD(2)+47(x),
[47(2),d D (&) J=iAD (z—2'),
(A4 (), AD (") ]=[A4D (x),4 P (') ]=0.
On introducing the Fourier transform of y,(k,,- - -,k.),

Yl @)=V T (2w

ki,ee., kn

X‘l’n(kl’ e ’k

n)eik1n+. . .+ik,,z,,, (7)
we have

I\I,>=i::0f. . .fd3xl. . 'daxn‘pn(xly' . .’x")
XA (21)--AD (x:)[0). (8)

The expectation value of A4 (x;)- - - 4 (x,) becomes

(¥[A () - Awa) [¥)

f fd% dsz,,dayl dsyq
p.q=0

X¢p* (21, - - EMIMCIREE 7yq)<0|A ) (zp)- -+
XA ) (Zl)A (xl) By | (xn)A (C) (yl) e
XA (3)[0). (9)

The matrix element (0] 4 (3,)- - - A (21) A4 (1) - - -
XA@)A (1) --A(y,)|0) may be represented
graphically as follows (Fig. 1). First, # points are drawn
in a horizontal line, representing the #» field operators
A(xs). Then, lines representing particles are drawn,
either connecting these points together in pairs, or
extending to the left or right. Lines may also extend
from left to right without touching one of the % points.

IN QUANTUM FIELD THEORY
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0o o—
FiG. 2. ?
Qe

Y 3

Exactly ¢ lines must extend to the right and p lines to
the left. The resulting figure describes the sequences of
operations involved in computing the matrix element.
The graphs, as well as the matrix elements are read
from right to left. First the ¢ creation operators
A (y,) act on the vacuum to give a g-particle state.
Then the field operators act in turn, either destroying
a particle already present, or creating another particle.
This results in a state of p particles, which are anni-
hilated by the 4™ (z;), giving the vacuum. Note that
exactly one line emerges from each point of the graph.
It may extend to the right or left representing de-
struction or creation, respectively, of the particle. If
the figure cannot be drawn for the given values of #, p,
and ¢, then the matrix element vanishes. It is usually
possible to draw more than one graph for the given
values of p, ¢, and #. For example, in the case n—3,
p—1, ¢—2, 12 different diagrams are possible. Six of
these are shown in Fig. 2. The other six are obtained
by crossing the two lines extending to the right.?
The quantity

(O] AW (2,)- -+ A (5)A (1) - -
XA@)AD (y) - A9 (39 [0)  (10)

is represented by the sum of all these possible graphs.
For a given graph, the line connecting a point P; to a
point P, to the right of P; contributes a factor
1A (Py— P,). We will not bother here to give a proof
of all these statements, but only exhibit a set of for-
mulas upon which an inductive proof may be based.
These are simple consequences of (7).

<OIA(+)(ZP)' . 'A(+)(21)A(x1)' f .A(xﬂ)A(—-)(yl). N

XA (39)]0)

= Z": IAD (2= 2, 0] A D (2,) - - - AD (2) A (1) - -
XA (%) A (2g1) - - - A ()AD (31) - - A9 (9] 0)
+i TAD (23— y ) O] AD () - - AD (3) A (1) - - -

=]

XA (x,,)A (S} (yl) e 4D (yH)A ) (yr+1) NN

XA (35)]0).
04 - A(xa)A(y)- - - 4(39)]0)

=£ A (2,—y1)(0} A (x1) - - - A (1) A (Xrp1) - - -
XA (@)AD (32)- - - AT (39 | 0).

12 These graphs are similar to Feynman graphs with only one
line terminating at each vertex.
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Fi6. 3.
Lo0 o

As an example of the graphical technique, we may
consider the vacuum expectation value of a product
of fields. This is the case p=¢=0, so that no 4™ or
A®) operators appear in (10), and no lines extend to
the right or left in the graphs. It is clear that the vacuum
expectation value of an odd number of operators
vanishes. We obtain

O] A(x1)- - - A (%) [0)

0 n odd

b3

Zin2A) (xiy—Xig) - - - AP (21— xi,), 7 even,

where the sum is taken over all possible ways to form
n/2 pairs from the » points, preserving the original
order of the x; within each pair. In the case of 4-fields,
the graphs are shown in Fig. 3.

When we are evaluating the quantity (7), many of
the graphs will give the same contribution because of
the symmetry of Y, (%1, - +,#,). For example, in Fig. 2
only the graphs shown give an independent contribution.
The six graphs obtained from them by permuting the
terminal points of the lines at the right each give the
same contribution to (9) as the corresponding unper-
muted graphs. Another example is the normalization
integral of the state (8): (¥|¥)=1. The independent
graphs are shown in Fig. 4. The contribution of each
graph must be multiplied by p!, the number of possible
graphs with crossed lines corresponding to the given
graph. Figure 4 (a) is associated with the vacuum com-
ponent of |¥). The resulting condition is

o f f dor- - daydy- - dysp W any )
»=0

Xy, - - Yp)IPAD (21— 1) - - AP (z,—y,) =1,

a further condition on the y,.

We may now prove the following theorem:

No state of the form (4) or (8) can be localized if
¥»=0 for all >N, an arbitrary integer.

This means that a localized state must have an
“infinite number of particles,” i.e., there must be a
nonzero probability of finding more than N particles in
the state, however large N may be. The proof of this
theorem depends upon the structure of expectation
values of products of field operators, and on certain
analyticity properties of these quantities considered as

()

FicG. 4.
o — _ p=l
(a) p=0

JAMES M. KNIGHT

functions of the variables x;.-‘These analyticity proper-
ties follow from the spectral conditions (5).

Before giving the general proof, we prove the simpler
theorem that a state of the form

[ ) =o|0)+21 Vi (k)| k),

with ¥ not identically zero, cannot be localized. Thisis a
special case of the general theorem with N =1. Consider
the quantity (¥|A4 (x1)4 (%) |¥). There are four dia-
grams contributing to this quantity, as shown in Fig. 5.
The sum of (a) and (b) is 1A (x;—x,) times the
normalization integral of the state |¥), which is equal
to unity. Thus the quantity ¥(xi,%s) which must be
localized is the sum of (c) and (d):

W (e 00) =i f Papr*(B)AD (5—1,)
"% f BEyAD (xa—y)¥1(y)

+i f By * () AP (z—x)

i [ 90 (=3

. =B (1) ®* (w2) +B (x2)®* (21), (11)
with
B(x)=1 f E* () AP (3—x)
==V ) (o) e
=fdk@(k)e‘“”‘,
P (k)= — (2w)}(2r) 9 (k) (B*+m*)y1* (k).  (12)

We have expressed ®(x), a solution of the Klein-
Gordon equation, as a four-dimensional Fourier trans-
form. The factors &(k*+4m?) and 6(k) are explicit
expressions of the spectral conditions (5). If we replace
x by the complex four-vector z=x-}-7y, expression (12)
defines a function of the four complex components of z
which is analytic for those values of z for which the
integral converges. It is easily seen that this is the case
in the region y& V., and that ®(3) is analytic in that
region.

As we allow y to approach zero from the forward light
cone, we obtain as a boundary value the function (12).
If we now hold the space part of z fixed and real, we
obtain a function ®(x,z,) which is analytic in the upper
half of the z plane, and takes on the value ®(x) on the

w0 —%

(¢) —oo0——
(b) oo

(@) ™

F16. 5.
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real axis. Then, by the uniqueness theorem for analytic
functions, we conclude that if ® vanishes in any time
interval at the point «, then it vanishes for all time at
that point.

By repeated application of this argument, we may
prove that ®(x) cannot vanish for all x outside V. (®)
unless it is identically zero, that is, unless y;(k) is
identically zero. Let x, be a point outside the light cone
for which ®(x0)>%£0. Then by (11),

(¥ ] A (w0)A (x0) | &) — (0] 4 (0)4 (wo) [0) =2 @ (x0) |0,

violating the condition of localization (2), and com-
pleting the proof that no state of the form

| W) =] 0)+ V= T 41 (k) | k)

can be localized.
We now go on to the proof that no state of the form

N
I‘I’>=Z V—nlz‘/’n(kly e :kn) l kl,' o )kn>
n=0
can be localized. Consider the expectation value of the
product of 2}V field operators:

(0} A (1) - - A (x2n) | 0). (13)

The diagrams contributing to this quantity may be
classified as follows:

(A) diagrams in which no two points x; are joined by
a line,

(B,) diagrams in which exactly 2p points x; are joined
by a line, p< N, and

(C) diagrams in which each x; is joined to another
%; by a line.®

For example, some of the graphs for the case N—2
are shown in Fig. 6. Figures 6 (a), (b), and (c), are of
type (C); (d) (e), (f), and (g) of type (B1); and (h)
and (j) of type (A). The sum of the contributions
of all diagrams of type (C) to the quantity (13)
is (0{A(xy):--A(x,)|0) time (¥|¥), or simply
(0] A (x1)- - - A(x,)|0) since |¥) is a normalized state.
Therefore, the sum of all contributions from diagrams
of types (A) and (B,) must vanish when all the x; lie
outside V.(®). It is clear that a diagram of type (By)
gives 1AM (x;—x;) times the sum of all contributions of
type (A) to the quantity

<‘I’ lA (xl) -4 (xi—l)A (xi+1) s
XA (x,-_l)A (x]-+1) .. 'A (ng) l\I’>

(0) o0 00
b)) - 0 —n
Fic. 6. € = 9 =)
(d) oo ¢o— (hy —o® o=
) To» o= () e

13 We might also call this class By.
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These contributions may be written

(T A(x) - A @) A (Xiga) -
XA (2;-1)A (x541) - - - A (%on) | ¥)
~{0]A(xy) - A@i1)A(2iy1)- -
XA (%) A (%541) - - - 4 (22n) | 0)
—\I/B(x1,~ X1y Xip Dy X1, X, ,sz)f

i.e., the quantity itself minus contributions of types (C)
and (B). The term

\I’B(xl’ MR 2N TE LTS PRIRY. 7SS P S Py ,ng)

may be in turn expressed as a sum of products of A®
functions with vacuum expectation values of products
of a smaller number of fields. It is therefore clear that
the (B)-type diagrams will contribute a quantity of the
form

2 AAD (i~ ) (Y[ A(xy) - - A (@) A (®ig1) - -

XA (x4 @j41) " - - A(22n) | ¥)
—0[A(x) - A@im) A (®ipr) - -
XA (x;21)A (x551) - - - A (20) | 0) ]
+ .<7.Z’k<l'iA(+) (0i— ;) - 1A (x—x7)
l XL+ [9)=0] - [0},

involving expectation values of products of less than 2V
field operators. Now these quantities must all vanish
when the «; lie outside V. (®) if |¥) is to be localized.
For such x; then, the only diagrams which need to be
considered are those of type (A). Two diagrams of this
type are shown in Fig. 7. The contribution of these
diagrams is

cb(xl" t >xN)q?*(xN+1y' v )x2N)

+0* (21, - 2N)P(Fwg1, -« * Xow)-
®(x1,- - ',xN)=’iNf' . -fdszl- Iy AD (21— x1) -

XAD (gy—xn)¥n*(21," + *,2v)

=(=V)¥ T (2% -wy)?

Xn* (b, - - hy)etn—- - —iknzy - (14)

The other type (A) diagrams are obtained by rear-
ranging the points x; in (14). Note that for each dia-
gram, there occurs another diagram which gives the
complex conjugate of the original diagram, as in Fig. 6.
If |¥) is to be localized, then it is necessary that the
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quantity
2 ®(xiy, -+« xin)P* (i, - - Kizw),

be localized in the sense of (2). The summation is taken
over all arrangements of the x;. Now, let us set x;=%x41
and xe=x3="- - =xNy=2xN49="" - =xsn, and let x, be a
fixed point outside V. (®). Then (15) becomes

4N2[ (2N— 2) ‘:] (JV !)’2 I Q(xl,x‘h ot )x2) ] 2
AN (V—1)[(2N—2) (V)2
XRe®* (x1,51,%2, - « *,22)® (2, * - +,%2).

(15)

The symmetry of & in its V arguments has been used
to obtain this expression. The first term arises from
those diagrams in which the points «; and xx4, are
connected to opposite sides of the diagram, and the
second term from those in which they are connected to
the same side. The factors 4N?[ (2N —2)!J(NV!)~2 and
4N (N—-1)[ (2N —2)](Ny 2 represent the total number
of diagrams of each kind. In the second term, complex
conjugate diagrams have been combined to give
R@*(xbxl;x?r o "xz)q)(x% ot 'yx2)-

The function ®(x,xs,- - +,%2) may be regarded as a
function of x; if we hold x, fixed. Its Fourier transform
with respect to x; vanishes except on the forward mass
hyperboloid, k2= —m? and k1,>0, by virtue of (14)
and (5). It is therefore an analytic function in the com-
ponents of x; — z;=x,-+1%y; in the region y,EV,, the
forward light cone. Thus, as before, there must be a
point x;® outside V(&) such that

D (21 @, 29,20, + + * %) =0,
There are two cases to consider:
(1) ®(xs,- - -,%2)=0. Then (14) becomes
AN [ (2N —=2) TV )2 @ (19,5, - - 22) | 220,

and the state cannot satisfy the localization criterion;
and

(2) ®(xs,- - -,x2)7%0, where we have
(WA (x2) -+ A (o) [¥)— (0 A (w2) - - A (22) [0)
=2(2N) (N )72 ®(xs,- - - x2) |20,

In each case, we have been able to construct points x;
all outside of V. (®) where (¥|A(x1)---A(xew)|¥)
# (0| A (x1)- -+ A(%2x)|0). We have therefore proved
that a state of the form

N
I\II>=Z V—n/2¢"(k1v' o )k") fkl,' N ':kﬂ>
n=0

cannot satisfy criterion (2).

The theorem just proved allows us to confine our
attention to states having an infinite number of particles
in the sense explained above. If we attempt to discuss
these states by the diagramatic method of this chapter,
we find that an infinite number of graphs contribute to
the expectation value of any given number of fields. For
example, the sequence of graphs in Fig. 8 contributes to

JAMES M. KNIGHT

— —_—
F1c. 8.
—— 3 ——
— - S——

(¥|A(x)|¥). This quantity is, therefore, given by an
infinite series, of which a typical term is

if'--fd“’zl---d"zpd?'yr--d“yp_xll/p*(zl,-“,zp)
X'Pp‘l(ylj te 7y11—1)A(+> (Zp_x)’

This series involves all the coefficients ¥, (21, * ,2,) for
all values of p. The condition that (¥|A(x)|¥) be
localized is thus a very complicated condition on
the ¢,, collectively. There are similar conditions for
(¥|A(x1)A (x;) | ¥), etc. The only simplification that
appears is that diagrams with two or more points
joined together may be omitted. This is similar to the
situation above with (B)-type diagrams. Since further
analysis based on this method becomes very com-
plicated, we pass to the approach described in the next
two sections.

5. STATES OF THE FORM exp(iR)|0), R LINEAR
Consider the state vector

exp(iR)|0), (16)

obtained by applying an exponential operator to the
vacuum.'* The fact that such a state always satisfies
our condition of localization when R is a Hermitian
operator depending only on the field operator 4 (x) with
xE® follows from the property of local commutativity
of the fields, and is therefore true in the case of inter-
acting fields having this property as well as for free
fields. Our further remarks in this section, however,
apply to the free-field case. The precise form of R will
be discussed later in this section, but for the present we
may imagine R to be of the same form as (1), but with
the integrations extending only over ®. To insure the
Hermiticity of R, the functions g¢; of (1) must be real.
Then since any point x; outside V.(®R) is space-like
with respect to the region R over which the integrals
defining R are taken, local commutativity insures that
[R,A(x;)]=0. It is then easily shown that the state
exp(¢R)|0) is localized, for

(0] exp(—iR) g A(x;) exp(iR)|0)

~(0] TT A(x;) exp(—iR) exp(iR)|0)

7=l

—(0] TT A(x7)]0)

=1

1 The author is greatly indebted to R. Glaser (private com-
munication to J. S. Toll) for calling these states to his attention.
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because exp(iR) is a unitary operator. The fact that
exp(2R)|0) is a localized state considerably enlarges the
manifold of such states at our disposal. One is led to
conjecture that all localized states may be expressed
in this form. Unfortunately, we have been able to neither
prove nor to disprove this assertion. We will, therefore,
confine ourselves here to as thorough an investigation
as practicable of these states, indicating at the end
some arguments supporting the conjecture.

First, it can be shown that the Poisson distribution
state studied in Sec. 3 can be put into the form
exp(¢R)|0), with

R= f](x)A (x)dx
=2 k(20) 7 (7* (kw)a(k)+j(kw)a' (). (17)

If we expand I\I/)-—exp(1R)|O) in momentum eigen-
states, we find the expansion coefficient

(1/"") (kh e !kﬂ l‘II}
= (i"/n}) (2"w1- « *wn)Hj(kyyw1) - - - j(Knywn)
Xexp(~1 X[ j(kw)|?), (18)

which is the same as that for the Poisson distribution
state.

The property of R essential to give localization is
that it involves only A4(x) with x restricted to @.
Equation (17) is therefore not the only form possible
for R. Another very natural form we might choose is
the following:

5
R= f Prg(@) 4@

= dax(g(x)—a—A (x)—A(x)igoc)) 19)
dxo %o ’

where g(x) is a localized solution of the Klein-Gordon
equation. The integral is taken over a space-like surface
intersecting the region ®. This surface usually will be
chosen as a time plane xo=constant, although this is,
of course, not necessary. If we define the Fourier
transform of g(x) by

g(x)=2 20V ) gk)e*s+4g*(k)e—*=],
we obtain
R=—i Y [a(k)g*(k)—a' (k)g(k)].

This is similar to the expression (17), and the expansion
of exp(iR)|0) into number and momentum eigenstates
may be performed in the same manner. We find that
the expansion coefficients agree with those of the
Poisson distribution state (18), if we set

¢(@)= f a2’ A(u— ') (),
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which makes explicitly clear the fact that g(x) is a
localized solution of the Klein-Gordon equation, since
7(x) vanishes outside ®.

We have investigated two different forms for the
operator R appearing in (16) in the case where R is
linear in A4 (x). Both of these forms give rise to states
of the Poisson distribution type discussed in Sec. 3.
Each form may be generalized to involve products of
more than one A4 (x). The generalization of (17) is given
by (1). The general form of (19) is

9
R=r+ f Brri(x)—A (x)
z0=t 9%

+ f f daxldaxzrg(xl,xg)-——
%10 0%20

310 =z90=%

XA (x)A (x2) . (20)
The ri(x1,- - - ,x,) as well as the ¢;(x1,- - <,x,) of (1) can
always be chosen as symmetric functions of their
arguments.

Since we are looking for a general representation of
localized states, we wish to decide which of these forms
is the more suitable. This is accomplished by requiring
that the representation be unique. In the case of the
Poisson distribution state, we note that the expansion
coefficients ¥, determine the quantity j(k,w) uniquely.
This corresponds to the quantity j(k,w) if we employ the
four-dimensional integration (17), and to g(k) if we
use the three-dimensional integral (19) for R. Thus,
j(k,w) and g(k) are fixed by the state. However, j(k,w)
is not sufficient to determine the function j(x) appearing
in (17), since it fixes only these Fourier components of
#(x) which satisfy the restriction k?—kgZ= —m?. The
other Fourier components, off the mass shell, are
entirely arbitrary inasmuch as they may be varied in
any way without affecting the state (16). In fact j(x)
need not even vanish outside ® in order that (16) be
localized. It is only necessary that a localized function
j{x) exists having the Fourier components j(kw) on
the mass shell. On the other hand, the function g(x)
appearing in the expression (19) for R is a solution of
the Klein-Gordon equation, and is therefore completely
determined by its Fourier components on the mass
shell. It is thus fixed uniquely once the expansion coef-
ficients (18) of the state are given. For this reason, we
will use the form (19) and its generalization (20) for the
operator R appearing in (16).

The nonuniqueness of the four-dimensional form can
be understood from a different point of view. Equation
(17) may be regarded as a linear combination of the
field operators at points in the region ®. A linear com-
bination of quantities is unique only if the quantities
are linearly independent. The field operators in our
extended region of space-time, however, are not linearly
independent, since an operator at a given time x, can
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be expressed through the equation of motion in terms
of operators at another time x,’. Since only points
within the light cone contribute, we have a linear
relation involving only field operators taken at points
of ®. In the other case, the integral (19) involves only
field operators and their time derivatives at a given
time. These are dynamically independent quantities,
and therefore no linear relation between them exists.
“This explains why we obtain a unique representation
-with (19) but not with (18).

6. STATES OF THE FORM exp(iR)|0), GENERAL

Having discussed states of the form (16) with R linear
in A (x), we now pass to a consideration of more com-
plicated forms of R. The general form of R is taken to
be (20), with 7,(x1,- --,x,) a localized solution of the
Klein-Gordon equation symmetric in all of its argu-
ments. The expectation value

(W[ A(xr) - A (wn) | ¥)
= (0]exp(—iR)A4 (1) -

may be expressed in the form

-A(x.) exp(iR) |0)

O[T (1) - - - T' () [0}, (21)
with
T'(x)=exp(—iR)A (x) exp(iR)
=A(x)+exp(—iR)[A(x), exp(iR)]
"A(x)-f-z ——[I [A@®),RLR]---], (22)

n=} n

where the nth term contains the #-fold commutator of
A (x) with R. Thus, the expectation value of a product
of field operators A(x) in a state |¥) reduces to the
vacuum expectation value of the product of I operators
(21). I'(x) is given in terms of A4(x) by the infinite
series (22). The exact form of I'(x) will depend upon
the functions r,(x;,---,%,) which define R. Suppose
that r,=0 for s> N, i.e.,, Ris a sum of terms in each of
which at most N operators A4(x) appear. We will
express this by writing R=0(47%). It is easily seen that
the commutator of an operator of order p with an
operator of order ¢ is an operator of order p-4-¢—2. It
is clear then that the nth term of the series (22) will
be of order

(A+N=-2)+(N-2)+- -+ (N—-2)=1+n(N-2).

Thus, if N>2, the operator I'(x) is of infinite order in
A{x). For N=1, the #=0 term, which is just A{x), is
of order 1, and the term n=1 is of order zero. The
remaining terms vanish. For N=2, each term of the
series is of order 1. These two cases are therefore par-
ticularly simple. The first, N=1, is the Poisson dis-
tribution state which we have already discussed at
length. For this state, I'(x) is given by

I'(x)=A(x)+r(x), (23)
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where the ¢ number 7;(x) is to be identified with the
function g(x) of Eq. (19). For the case N=2, we take
R to be

R= f f Py dPxar (xl,xz)—-—-— ——A (x1)A (x2). (24)

dxre %0

By making use of the fact that 7(xy,%.) is a symmetrical
solution of the Klein-Gordon equation, and therefore
satisfies the following equation:

d
r(xl,x2)=—fﬁxl'A(xl“xf)—f(xl ,C’C2),
%10’

we obtain

[A{x),R]=2 f f daxld?'xzr(xl,xz)i-

axm axza

XA (x)A(x—x5)

;]

d
=27 d3x17’ (x,xl)wA (x;) 5
%10

where we have also used the commutation relation
[A4(x),4(*")]=iA(x—="). The n-fold commutator
[[---[4(),R],R]---] may be computed similarly:

[[‘ ) ‘[A (x)’R])R]f . ']

3
= (Zi)"f- . fd"’xl - By (,x1)
9%10

a9
X7 (21,%9) ="+ 7 (¥n—1,82)——A (¥a).
X20 X 70

We therefore find that

]
P@=A@+ [y (a)—AR), (29)
8x0’
» (=2)" d
y(xa")= ;L:x - f . -fd’xl- < dPar(,x1) -
Xr(xl’x2) v '"_‘i“'r(xﬂ—hx,); (26)

axn—l.o

by substituting these expressions into (22). For N>2,
it is also possible to give the form of I'(x), but we will
not do this here.

There is a strong similarity of the relation between
A{x) and T'(z) to that between 41, (x) and Ao {x) ina
relativistic field theory with interaction. The corre-
spondence is exact if we allow interaction with an
external source. This is easily seen from the example
given in Sec. 3. The relation

T'(x)=exp(—iR)4 (x) exp(iR)
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is analogous to the relation
A (x)=5TA4;,(x)S.

A relation of the form (22) also exists between in- and
out-going fields if we introduce the phase matrix n by
S=exp(—in). There is one point of dissimilarity
between I'(x) and the outgoing field of a system such
as that described by the quantum electrodynamics
where no external current acts. There, the outgoing
field is invariant under displacements, whereas in our
case the localized nature of the operator R destroys the
displacement invariance of I'(x) considered as a free
field. Thus the vacuum expectation value of a product
of T operator does not have the simple properties of
the Wightman functions.? They are not, for example,
functions of the coordinate differences only, and do not
have the same simple analyticity properties. It is still
possible, however, to draw certain conclusions by means
of analyticity properties, as we shall do below in the
case where T has the form (24).

Before proceeding further, we will note that, since
I'(») is obtained from A(x) by the unitary transfor-
mation exp(—iR)A(x) exp(iR), it must satisfy the
same commutation relation: [T'(x),I'(y) ]=4A(x—7v). In
the case where R is linear in 4 (x), N=1 above, this can
also be seen directly from the expression (23) for I'(x),
since 71(x) is a c-number function and thus commutes
with 4 (x). For the case N=2, where R has the form
(24) and I'(x) the form (25), we find

[0(x),0(5)T=iA(x—3) — v () +iv (3,)
i [y @ 807,
It is therefore necessary that y(x,y) satisfy the relation
1639 =709~ [ P12 3/3500y () =0.

This is not an independent relation, but follows identi-
cally from (26).

It is clear that the condition of localization places
certain restrictions upon the region of space where
v(x,y) may differ from zero. It is our purpose to find
out what these restrictions are and to find the corre-
sponding conditions for the function r(x,y) in terms of
which vy(x,y) is defined. Let us assume that on the
reference time plane over which the integral (25) is
taken, v(x,y) and its derivatives with respect to %o and
¥o and its mixed second derivative with respect to ao
and y all vanish when either x or y lies outside a large
but bounded region § of 3-space. These four quantities,
v(x,y) and its 3-time derivatives, when given for all
space at a given time, completely determine v (x,y) for
all space-time, since they provide the initial values from
which v(x,y) may be computed from the Klein-Gordon
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equation. The region 8 is arbitrary, and may be taken
much larger than ®, the region of localization.
From (25) we obtain

O[T ()T ()]0)
=(0[A(x)4(5)[0)
b

+i [ @20/ —A® =)
ayo

3
+i f &Bx'y (x5 )—,A (' —y)
axo

9
+1 f fdax'day"y(x,x')’}’(x’y’) ,
axo’ ayo

XA® (' =y), (27)

where we have used the relation
0] 4 (x)4A () [0)=1iAD (x—y).

The sum of the last three terms on the right side of (27)
must vanish when both x and y are outside V.(®R).
We denote these terms by a, b, and ¢, respectively. The
Fourier transform of the singular function A® appear-
ing in (27) vanishes except on the forward mass
hyperboloid k2= —m?, and k¢>0. Therefore, as in Sec.
4, it is an analytic function of the components of the
vector ¥ whenever the imaginary part of x lies in the
forward light cone. We conclude that the quantity ¢ is
analytic in x, and the quantity & is analytic in y. The
argument of Sec. 4 can therefore be applied to show
that if these functions vanish over any extended region
of space-time in their analytic arguments, they must
vanish everywhere.

The localization condition requires that the quantity
a+bc together with its three time derivatives, vanish
outside the union of the regions ®XTUV and UXGA.
®X is the cartesian product of the region ® and the
whole space,!® denoted here by V. In consequence of our
assumption that vy(x,y) vanishes outside of the region
8X 8, it is evident from (27) that ¢=0 outside of VXS,
that 5=0 outside of 8§XU, and that ¢=0 outside of
8X 8. Now, consider the region (0—8)X (§—®), shown
schematically as the shaded region in Fig. 9.

In this region ¢-+5+¢ must equal zero. But we have
shown that b and ¢ vanish there. Thus, ¢ must also
vanish. We can conclude from this by means of the
analyticity of ¢ in the variable x that ¢ vanishes for all
x when y is in (§—®). We may, therefore, subtract the
region UX(8—®) from the region we have already
found, and obtain the result that =0 outside of UX®.
By an entirely similar argument, b=0 outside of ® X V.
The localization condition may now be applied to show
that ¢=0 outside the union of §X® and ®XS8. The

15 In this section, we use ® to denote the three-dimensional

region over which the integrals in (5.7) extend, and not the four-
dimensional space-time region used previously.
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same results apply to the three time derivatives of each
of these quantities.

It is possible to find a restriction on the region where
v(x,y) may differ from zero from the above. From (27)
we obtain

(7]
Ima=} [ Pyriy)—aG—y). @9
ayol

Here, we have used A™ (x)=1(A(x)—:iAD(x)). It
follows immediately from this and the properties of the
A function that Ime=—%y(y,x). The corresponding
relation between the three time derivatives may be
derived in the same way after differentiating both
sides of (28). Taking into account that Img and its
derivatives vanish outside VX ®, we find

ey)= év (x,3) _ dy(x,y) _ 0%y (x,y) o

axoayo
if (x,y) ERX.

axo ayo
(29)

Equation (29) implies that +v(x,y) for arbitrary y is
localized in # in the region Vi (®). Our argument shows
that (29) is a necessary condition that the expectation
value of the product of two fields satisfy the localization
criterion. That it is also sufficient is obvious from Eq.
(27). Note that we may add a linear term of the form
(19) to the expression (24) for R without interfering
with the above argument. In fact, the localization con-
dition for (0|T'(x)|0) requires that g(x) and dg(x)/dxo
be confined to the region &, so that it does not enter
into the above considerations.

It has now been shown that condition (29) is equiva-
lent to localization of the state exp(sR)|0), where R is
given by (24). Is it possible to conclude from this that
r(x,y) and its time derivatives are zero outside of R X ®?
It is obvious from (26) that this property of r(x,y) is
sufficient to guarantee that y(x,y) satisfies (29). Fur-
thermore, if we assume only that r(x,y) is confined, for
example, to the cross-shaped region UX®+® XV, (29)
can only be satisfied if a large-scale cancellation occurs
among the terms of the series (26) for y(x,y) at points
x lying outside of ®. It seems unlikely that this is pos-
sible, although we have not been able to prove its
impossibility. It is shown in the Appendix that Eq. (26)
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may be inverted and 7(x,y) expressed in terms of v(x,y) :

r(x,y):i (_l)nf---fd%l---d%cn_l
5 -

n=1 2n

i)
X‘Y(xyxl)_' ° '—'Y(xn—lay)' (30)

0x10  O%n-1,0

In order to derive (30), certain very restrictive and
ad hoc assumptions must be made about the function
r(x,y). We cannot, therefore, claim general validity for
this relation. However, if these assumptions are satisfied,
it is clear from (30) that r(x,y) with its time derivatives
must be confined to ® X ®. For, in consequence of con-
ditions (29), each term of the series (30) is equal to zero
when x lies outside ®, and so also their sum. Then, from
the symmetry of r(x,y) in x and y, we conclude that it
also vanishes when y is not in Q.

We will now give a summary of the results of the last
two sections. Our aim in considering states of the form
(16) was to provide a general representation of states
satisfying the definition of localization (2). Two different
forms of the Hermitian operator R were considered, and
the first rejected because the corresponding represen-
tation proved to be nonunique. The second form of R
is determined by a sequence of functions 7,(x1,- - *,xa.),
each of which is a solution of the Klein-Gordon equation
independently in each argument. We have shown that
when R is linear in the field, the function r,(x) must be
localized in the region V.(®). When R is quadratic in
the fields, we proved that 7,(x,y) must be zero outside
of Vo (®R)XV.(®R), subject to certain assumptions on
the nature of 7:(x,y).

In order to give a complete proof of the generality of
the representation (16), we would have to show (a) that
any state can be written in the form exp(iR)|0) if
7a(#1," - -,%¥,) 1s not restricted to be confined to any
particular region of space, (b) that the localization
condition then requires that 7,(x1,- - - ,%,) vanish outside
Vi(®)X:--XV.L(®R), and (c) that the representation
is unique. The results of this section and the last show
that (b) and (c) are true in some simple cases. Although
it has not been possible here to give a complete general
proof, it is encouraging to find that the conjecture that
(16) is a general representation of localized states is
substantiated in those cases in which it could be verified.

7. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a definition of
localization based on taking the field variables as the
primary measurable quantities. This enables us to
avoid some of the difficulties which occur when one
formulates such a definition in terms of particle ob-
servables. Our definition is completely Lorentz in-
variant, since it is formulated in terms of Lorentz-
invariant quantities and refers to the situation of the
field over all space-time. Two states localized in different
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regions of space are not expected to be orthogonal
because the two regions of localization V.(®,) and
V. (®,) always overlap, however far ®; may be removed
from ®.. It may be verified that two states of the
Poisson distribution type discussed in Chap. III are not
orthogonal. Our definition thus seems satisfactory and
appropriate to the current formulations of quantum
field theory.

We have given results concerning the nature of the
states satisfying the localization condition. It was seen
in Sec. 5 that there is a large class of such states ex-
pressible in the simple form exp(iR)|0). We have given
arguments indicating that eny localized state may be
represented in this form, and proposed a general
method of proof. While we have concentrated our
attention in a large part of this thesis to the free-field
case, this representation offers promise of being valid
and general for the case of interacting fields as well.

Our motivation in taking up this problem was the
hope that the results might be useful as the basis for a
general approach to scattering problems in field theory.
It does indeed appear that the states satisfying our
definition of localization do provide an idealized de-
scription of the initial and final states of scattering
processes which is nearer to the physical reality of pro-
duction and detection than the customary idealization
of single particle states. It is possible that by applying
the methods of this paper, some of the difficulties asso-
ciated with the asymptotic condition might be clarified.
It is even possible that a description of scattering
experiments might be given without appealing to the
asymptotic condition. Such a description would neces-
sarily be more complicated in some respects. For
example, the theory of Sec. 4 shows that localized states
may not contain a finite number of particles. This
requires that any description of scattering in terms of
localized states involve an infinite number of S-matrix
elements between states of definite particle number.

However, it is easily seen from our example in Sec. 3
that if the current j(x) is weak, we obtain a localized
state in which the vacuum amplitude dominates, and
the one-particle amplitude is much larger than the
remaining amplitudes. It may, therefore, be possible to
isolate the one-particle scattering terms from the
others by a limiting process in which the strength of the
current approaches zero.

It is not possible at present to evaluate completely
the merits and defects of such a procedure, but it is
hoped that the results of this paper will provide the
foundation of a useful alternative to the conventional
description of the scattering process in quantum field
theory.
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APPENDIX: INVERSION OF EQUATION (26)

In order to invert Eq. (26), we introduce a complete
orthonormal set {¢:(x)} of solutions of the Klein-
Gordon equation:

E]
xpi* (%) =0 P,
[aw (@ —i(9=0 A

Tiocdi(x)eX(y)=iA(x—y).

o;==t1 according to whether ¢;(x) belongs to positive
or negative energy. We define the quantity 7;; by

(A2)

axo

3 3
o= f f Py ) e (53 410),
r(x,y)=— Z o0 r:i9:(X)p ().

The second equation (A2) follows from the first upon
making use of (Al). The reality and symmetry of
r(x,y) require that r;;=r;*, v;; is defined in a similar
way in terms of y(x,y), but v;;7v,* because y(x,y) is
not symmetric.

We now choose the set {¢:(x)} in such a way that r;;
becomes a diagonal matrix, and set r;;=r#5;;. After
introduction of the newly defined quantities, (26) is
transformed into

toiye;= (€72 —1)d.y.
Thus, v;; is also diagonal, with eigenvalues
yim (1/io?) (e 2o 1),
This equation may be solved for 7, yielding

—2igr;=log(14i0sy:). (A3)

The quantities y; are complex numbers lying on a circle
of unit radius and center at the point +1. If 7; is such
that «; lies within the unit circle centered at the origin,
then (A3) may be expanded into a convergent power
series in v;:

w (—1)»

21:6,1,‘=2

n=1 n

(ia’ TR

If this expansion is possible for all r; then we may
reintroduce 7(x,y) and v(x,y) by means of (A2) and
obtain Eq. (30):

oy =s T [ [ s an

n=t 2n

i) 0
Xy (%,21)—+ o —y (Xn_1,9).
Ox10  O%n—1,0
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