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 The Problem of Hidden Variables in
 Quantum Mechanics

 SIMON KOCHEN & E. P. SPECKER

 Communicated by A. M. Gleason

 0. Introduction. Forty years after the advent of quantum mechanics the
 problem of hidden variables, that is, the possibility of imbedding quantum
 theory into a classical theory, remains a controversial and obscure subject.
 Whereas to most physicists the possibility of a classical reinterpretation of
 quantum mechanics remains remote and perhaps irrelevant to current problems,
 a minority have kept the issue alive throughout this period. (See Freistadt [5]
 for a review of the problem and a comprehensive bibliography up to 1957.)
 As far as results are concerned there are on the one hand purported proofs of
 the non-existence of hidden variables, most notably von Neumann's proof, and
 on the other, various attempts to introduce hidden variables such as de Broglie
 [4] and Böhm [1] and [2]. One of the difficulties in evaluating these contradictory
 results is that no exact mathematical criterion is given to enable one to judge
 the degree of success of these proposals.

 The main aim of this paper is to give a proof of the nonexistence of hidden
 variables. This requires that we give at least a precise necessary condition for
 their existence. This is carried out in Sections 1 and 2. The proposals in the
 literature for a classical reinterpretation usually introduce a phase space of
 hidden pure states in a manner reminiscent of statistical mechanics. The attempt
 is then shown to succeed in the sense that the quantum mechanical average
 of an observable is equal to the phase space average. However, this statistical
 condition does not take into account the algebraic structure of the quantum
 mechanical observables. A minimum such structure is given by the fact that
 some observables are functions of others. This structure is independent of the
 particular theory under consideration and should be preserved in a classical
 reinterpretation. That this is not provided for by the above statistical condition
 is easily shown by constructing a phase space in which the statistical condition
 is satisfied but the quantum mechanical observables become interpreted as
 independent random variables over the space.
 The algebraic structure to be preserved is formalized in Section 2 in the
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 60  S. KOCHEN & E. P. SPECKER

 concept of a partial algebra. The set of quantum mechanical observables viewed
 as operators on Hilbert space form a partial algebra if we restrict the operations
 of sum and product to be defined only when the operators commute. A necessary
 condition then for the existence of hidden variables is that this partial algebra
 be imbeddable in a commutative algebra (such as the algebra of all real-valued
 functions on a phase space). In Sections 3 and 4 it is shown that there exists
 a finite partial algebra of quantum mechanical observables for which no such
 imbedding exists. The physical description of this result may be understood
 in an intuitive fashion quite independently of the formal machinery introduced.
 An electric field of rhombic symmetry may be applied to an atom of orthohelium
 in its lowest energy state in any one of a specified finite number of directions.
 The proposed classical interpretation must then predict the resulting change
 in the energy state of the atom in every one of these directions. For each such
 prediction there exists a direction in this specified set in which the field may
 be applied such that the predicted value is contradicted by the experimentally
 measured value.

 The last section deals with the logic of quantum mechanics. It is proved
 there that the imbedding problem we considered earlier is equivalent to the ques
 tion of whether the logic of quantum mechanics is essentially the same as classical
 logic. The precise meaning of this statement is given in that section. Roughly
 speaking a prepositional formula \p(xi , • , x„) is valid in quantum mechanics
 if for every "meaningful" substitution of quantum mechanical propositions P,
 for the variables x{ this formula is true, where a meaningful substitution is one
 such that the propositions P, are only conjoined by the logical connectives in
 ^(Pi , • • • P„) if they are simultaneously measurable. It then follows from
 our results that there is a formula <p(xl , ••• , xS6) which is a classical tautology
 but is false for some meaningful substitution of quantum mechanical propositions.
 In this sense the logic of quantum mechanics differs from classical logic. The
 positive problem of describing quantum logic has been studied in Kochen and
 Specker [10] and [11].

 In Section 5 the present proof has been compared with von Neumann's
 well-known proof of the non-existence of hidden variables, von Neumann's
 proof is essentially based on the non-existence of a real-valued function on the
 set of quantum mechanical observables which is multiplicative on commuting
 observables and linear. In our proof we show the non-existence of a real-valued
 function which is both multiplicative and linear only on commuting observables.
 Thus, in a formal sense our result is stronger than von Neumann's. In Section
 5 we attempt to show that this difference is essential. We show that von Neu
 mann's criterion applies to a single particle of spin f, implying that there is no
 classical description of this system. On the other hand, we contradict this
 conclusion by constructing a classical model of a spin § particle. This is done
 by imbedding the partial algebra of self-adjoint operators on a two-dimensional
 complex Hilbert space into the algebra of real-valued functions on a suitable
 phase space in such a way that the statistical condition is satisfied.
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 QUANTUM MECHANICS  61

 1. Discussion of the problem. For our purposes it is convenient to describe
 a physical theory within the following framework. We are given a set 0 called
 the set of observables and a set S called the set of states. In addition, we have
 a function P which assigns to each observable A and each state ^ a probability
 measure PAi on the real line R. Physically speaking, if U is a subset of R which
 is measurable with respect to PAi , then PA*(U) denotes the probability that
 the measurement of A for a system in the state yields a value lying in U.
 From this we obtain in the usual manner the expectation of the observable A
 for the state \{/,

 States are generally divided into two kinds, pure states and mixed states.
 Roughly speaking, the pure states describe a maximal possible amount of
 knowledge available in the theory about the physical system in question; the
 mixed states give only incomplete information and describe our ignorance of
 the exact pure state the system is actually in.

 We illustrate these remarks with an example from Newtonian mechanics.
 Suppose we are given a system of N particles. Then each pure state \p of the
 system is given by a 6iV-tuple (g,, • • • , q3N, p1, • • • , p3N) of real numbers denot
 ing the coordinates of position and momentum of the particles. In this case,
 the probability PAi, assigned to each observable is an atomic measure, con
 centrated on a single real number a. That is, PAi,(U) = 1 if a t U and PAi(U) — 0
 if a i U. Thus, if we introduce the phase space 0 of pure states, which we may
 here identify with a subset of 6iV-dimensional Euclidean space, then each
 observable A becomes associated with a real-valued function fA : Ü —» R given

 If N is large it is not feasible to determine the precise pure state the system
 may be in. We resort in this case to the notion of a mixed state which gives
 only the probability that the system is in a pure state which lies in a region of ß.
 More precisely, a mixed state \p is described by a probability measure on
 the space Ü, so that, for each measurable subset r of Q, n^(V) is the probability
 that the system is in a pure state lying in r. It follows immediately that the
 probability measure PAi assigned to an observable A and mixed state \p is given
 by the formula

 !»

 by hit') = a.

 p*m = m\u)).

 (2)

 In the case of quantum mechanics the set 0 of observables is represented by
 self-adjoint operators on a separable Hilbert space 3C. The pure states are given
 by the one-dimensional linear subspaces of 3C. The probability PA+ is defined
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 62  S. KOCHEN & E. P. SPECKER

 by taking the spectral resolution of A:

 A — [ X dEAQÏ),
 v —co

 where EA is the spectral measure corresponding to A. Then

 Pa*(U) = (EA(UH, i),

 where *p is any unit vector in the one-dimensional linear subspace corresponding
 to the pure state \p. Hence, by the spectral theorem

 Exp, (A) = X d(EA(U)t, t) = (At, i).

 Although there may be states \p for each observable A in this theory such that
 PAi, is atomic, there are no longer, as in classical mechanics, states \p such that
 PA is atomic simultaneously for all observables.

 The problem of hidden variables may be described within the preceding
 framework. Let us recall that the hidden variables problem was successfully
 solved in a classical case, namely, the theory of thermodynamics. The theory
 of macroscopic thermodynamics is a discipline which is independent of classical
 mechanics. This theory has its own set of observables such as pressure, volume,
 temperature, energy, and entropy and its own set of states. This theory shares
 with quantum mechanics the property that the probability PAt is not atomic
 even for pure states tp. In most cases this probability is sufficiently concentrated
 about a single point so that it is in practice replaced by an atomic measure.
 However, there are cases where distinct macroscopic phenomena (such as
 critical opalescence) depend upon these fluctuations.

 It proves possible in this case to introduce an underlying theory of classical
 mechanics on which thermodynamics may be based. In terms of the preceding
 description a phase space 0 of "hidden" pure states is introduced. In physical
 terms the system is assumed to consist of a large number of molecules and Q
 is the space of the coordinates of position and momentum of all the molecules.
 Every pure state ^ of the original theory of thermodynamics is now interpreted
 as a mixed state of the new theory, i.e., as a probability measure over the
 space fi. Every observable A of thermodynamics is interpreted as a function
 fA : 0 —> R, and it is assumed that condition (1) and hence (2) holds. It is in
 this way that the laws of thermodynamics become consequences of classical
 Newtonian mechanics via statistical mechanics. The formula (2) is the familiar
 statistical mechanical averaging process. This example has been considered
 as the classic case of a successful introduction of hidden variables into a theory.

 The problem of hidden variables for quantum mechanics may be interpreted
 in a similar fashion as introducing a phase space 0 of hidden states for which
 condition (1) is true. This statistical condition (1) has in fact been taken as a
 proof of the success of various attempts to introduce a phase space into quantum
 mechanics. Now, in fact the condition (1) can hardly be the only requirement

This content downloaded from 
�������������140.0.246.18 on Thu, 30 Sep 2021 02:54:11 UTC�������������� 

All use subject to https://about.jstor.org/terms



 QUANTUM MECHANICS  63

 for the existence of hidden variables. For we may always introduce, at least
 mathematically, a phase space 0 into a theory so that (1) is satisfied. To see
 this, let

 0 = Re = {« I co:0 —>R}.

 If A t 0, let fA : Q —> R be defined by jA (co) = «(A). If ^ s S, let

 ßi/i H PAlf ,
 AsQ

 the product measure of the probabilities PAi . Then,

 HtfAU) = I «(A) e U}) = PAt{U).

 We have two reasons for mentioning this somewhat trivial construction.
 First, in the various attempts to introduce hidden variables into quantum
 mechanics, the only explicitly stated requirement that is to be fulfilled is the
 condition (1). (See Böhm [1] and [2], Bopp [3], Siegel and Wiener [16], and
 especially the review of [16] in Schwartz [15].) Of course, the above space £2
 is far more artificial than the spaces proposed in these papers, but the only
 purpose here was to point out the insufficiency of the condition (1) as a test
 for the adequacy of the solution of the problem.

 Our second reason for introducing the space R° is that it indicates the direc
 tion in which the condition (1) is inadequate. For each state \p, as interpreted
 in the space R8, the functions jA are easily seen to be measurable functions with
 respect to the probability measure . In the language of probability theory
 the observables are thus interpreted as random variables for each state i//. It
 is not hard to show furthermore that in this representation the observables
 appear as independent random variables.

 Now it is clear that the observables of a theory are in fact not independent.
 The observable A2 is a function of the observable A and is certainly not inde
 pendent of A. In any theory, one way of measuring A2 consists in measuring A
 and squaring the resulting value. In fact, this may be used as the definition of a
 function of an observable. Namely, we define the observable g(A) for every
 observable A and Borel function g : R —» R by the formula

 (3) P,uu(U) = PM(g-\U))

 for each state \f/. If we assume that every observable is determined by the func
 tion P, i.e., PA$ = PBi for every state ^ implies that A = B, then the formula
 (3) defines the observable g(A). This definition coincides with the definition
 of a function of an observable in both quantum and classical mechanics.
 Thus the measurement of a function g{A) of an observable A is independent

 of the theory considered—one merely writes g(a) for the value of g{A) if o
 is the measured value of A. The set of observables of a theory thereby acquires
 an algebraic structure, and the introduction of hidden variables into a theory
 should preserve this structure. In more detail, we require for the successful
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 64  S. KOCHEN & E. P. SPECKER

 introduction of hidden variables that a space 0 be constructed such that condi
 tion (1) is satisfied and also that

 for every Borel function g and observable A of the theory. Note that this
 condition is satisfied in the statistical mechanical description of thermodynamics.
 Our aim is to show that for quantum mechanics no such construction satisfy

 ing condition (4) is possible. However, condition (4) as it stands proves too
 unwieldy and we shall first replace it by a more tractable condition.

 2. Partial algebras. We shall say that the observables in a theory
 are commeasurable if there exists an observable B and (Borel) functions /,• ,
 it I, such that A( — fi(B) for all i e I. Clearly in this case it is possible to measure
 the observables A{ , i t I, simultaneously for it is only necessary to measure
 B and apply the function /< to the measured value to obtain the value of A{ .
 In quantum mechanics a set {At | i e /} of observables is said to be simultaneously
 measurable if as operators they pairwise commute. A classical theorem on
 operators shows that this coincides with the above definition (see, e.g., Neumark
 [12, Thm. 6]). (Note that as a result in the case of quantum mechanics the
 Ai , i 11, are commeasurable if they are pairwise commeasurable.)

 If Ax and A2 are commeasurable then we may define the observables -j
 (i2A2 and AjA2 for all real Mi , M2 • For then At = j,(B) and A2 — f2(B) for some
 observable B and functions /j and /2. Hence we have

 With linear combinations and products of commeasurable observables de
 fined the set of observables acquires the structure of a partial algebra. Note
 that condition (4) implies that the partial operations defined in (5) are preserved
 under the map /. These ideas will now be formalized in the following definitions.

 Definition. A set A forms a partial algebra over a field K if there is a binary
 relation 9 (commeasurability) on A, (i.e., 9 Ç A X A), operations of addition
 and multiplication from $ to A, scalar multiplication from K X A to A, and
 an element 1 of A, satisfying the following properties:

 1. The relation $ is reflexive and symmetric, i.e., a 9 a and a 9 b implies
 6$ a for all a, b t A.

 2. For all a t A, a 9 1.
 3. The relation 9 is closed under the operations, i.e., if a< 9 a,- for all 1 ^ i,

 j S 3 then (a, + a2) 9 , a,a2 9 a3 and Xa, 9 a3, for all X e K.
 4. If <Zi 9 a, for all 1 ^ i, j g 3, then the values of the polynomials in ax ,

 a2, a3 form a commutative algebra over the field K.

 (4)  1»u) — ç(iÀ)

 (5)
 MiAi + ß2A2 = (mi/i + M2/2) (B)

 4,4, = (W(B).
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 QUANTUM MECHANICS  65

 It follows immediately from the definition of a partial algebra that if D is
 a set of pairwise commeasurable elements of A then the set D generates a com
 mutative algebra in A.

 We have defined the notion of a partial algebra over an arbitrary field K
 but there are two cases which are of interest to us. The first is the field R of

 real numbers and the second is the field Z2 of two elements. For the case of a
 partial algebra over Z2 we may define the Boolean operations in terms of the
 ring operations in the usual manner: a C\ b — ab, a U b — a + b — ab, a' =
 1 — a. It follows that if a< Ç a, , 1 g i, j ^ 3, then the polynomials in al , a2 ,
 a3 form a Boolean algebra. We shall call a partial algebra over Z2 a partial
 Boolean algebra. It is clear how we may define this notion directly in terms of
 the operations C\, U, What makes a partial Boolean algebra important for
 our purposes is that the set of idempotent elements of a partial alegbra 31
 forms a partial Boolean algebra. This is a counterpart of the familiar fact that
 the set of idempotents of a commutative algebra forms a Boolean algebra.

 We consider some examples of partial algebras. Let H(Ua) be the set of all
 self-adjoint operators on a complex Hilbert space U" of dimension a. If we
 take the relation 9 to be the relation of commutativity then H(Ua) forms a
 partial algebra over the field R of reals. In this case the idempotents are the
 projections of U". Thus the set B(U") of projections forms a partial Boolean
 algebra. Because every projection corresponds uniquely to a closed linear sub
 space of U", we may alternatively consider B(U") as the partial Boolean algebra
 of closed linear subspaces of U". The direct definition of the relation $ in
 this interpretation of B(U") is: a $ 6 if there exists elements c, d, e in B(U")
 which are mutually orthogonal with a = c @ d and b = d @ e. Furthermore
 0 H b denotes the intersection of the two subspaces a and b, a U b denotes the
 space spanned by a and b, and a' denotes the orthogonal complement of a.

 We have seen that the set 0 of observables of a physical theory forms a
 partial algebra over R if we take $ to be the relation of commeasurability.
 If A is an idempotent in 6, then it follows from the definition of A2, that the
 measured values of the observable A can only be 1 or 0. By identifying these
 values with truth and falsity we may consider each such idempotent observable
 as a proposition of the theory. (See von Neumann [19, Ch. III.5] for a more
 detailed discussion of this point.) Thus, the set of propositions of a physical
 theory form a partial Boolean algebra. It is a basic tenet of quantum theory
 that the set of its observables may be identified with a partial sub-algebra Q
 of the partial algebra of self-adjoint operators on a separable complex
 Hilbert space. This implies then that the propositions of quantum mechanics
 form a partial Boolean sub-algebra (B of B ([/").

 Every commutative algebra A forms a partial algebra if we take the relation
 Ç to be A X A. The following construction of a partial algebra is of interest
 because it gives us an alternative way of viewing partial algebras. Let C< ,
 1 11, be a non-empty family of commutative algebras over a fixed field K which
 satisfy the following conditions:
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 66  S. KOCHEN & E. P. SPECKER

 (a) For every i, j 11 there is a k t1 such that C\ C\ C,- = Ck.
 (b) If ai, • • • , an are elements oî C — \JitI Ci such that any two of them He

 in a common algebra C,, then there is a k 11 such that ax, • • • , a„t Ct .

 The set C forms a partial algebra over K if we define the relations (i) a 9 b,
 (ii) ab = c, and (iii) a + & = cmCby the condition that there exist an izl
 such that (i) a, b t Ci , (ii) ab = c in C, and (iii) a + b = c in C< respectively.
 It is not difficult to show that every partial algebra is isomorphic to an algebra
 of this type. (We may thus view a partial algebra as a category in which the
 objects are commutative algebras and the maps are imbeddings.)

 Definition. A map h : U —> V between two partial algebras over a common
 field K is a homomorphism if for all a, b t U such that a $ b and all n, X c K,

 h(a)9h(b),

 h(pa + \b) = ph(a) + \h(b),

 h(ab) = h(a)h(b),

 h( 1) = 1.

 Given this definition we may state what our condition (4) of Section 1 on
 the existence of hidden variables implies for the partial algebra Q of observables
 of quantum mechanics. The set Rn of all functions / : 0 —» R from a space Q
 of hidden states into the reals forms a commutative algebra over R. From the
 way in which the partial operations on the set of observables of a theory are
 defined (equation (5)), condition (4) implies that there is an imbedding of the
 partial algebra into the algebra Ra. Our conclusion of this discussion is then
 the following:

 A necessary condition for the existence of hidden variables for quantum mechanics
 is the existence of an imbedding of the partial algebra Q of quantum mechanical
 observables into a commutative algebra.

 A possible objection to this conclusion is that the map of Q into the com
 mutative algebra C need not be single-valued since a given quantum-mechanical
 observable may split into several observables in C. Thus, Q might be a homo
 morphic image of C. We shall meet this objection in Section 5 by showing that
 even such a many-valued map of Q into C does not exist.

 Now if <p : 31 —■» C is an imbedding of a partial algebra 91 into a commutative

 algebra, it follows immediately that <p restricted to the partial Boolean algebra
 of idempotents of 91 is an imbedding into the Boolean algebra of idempotents
 of C. Thus, the existence of hidden variables implies the existence of an im
 bedding of the partial Boolean algebra of propositions of quantum mechanics
 into a Boolean algebra. We may justify the last statement independently of
 the previous discussion. For the set of propositions of a classical reinterpretation
 of quantum mechanics must form a Boolean algebra. But the conjunction of
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 QUANTUM MECHANICS  67

 two commeasurable propositions has the same meaning in quantum mechanics
 as in classical physics and so should be preserved in the classical interpretation.

 Let h : Q —* R be a homomorphism of the partial algebra Q of quantum
 mechanical observables into R. Physically speaking h may be considered as a
 prediction function which simultaneously assigns to every observable a predicted
 measured value. If we assume the existence of a hidden state space ti, so that
 Q is imbeddable by a map / into the algebra R°, then each hidden state « t R°
 defines such a homomorphism h : Q —> R, namely h(A) = Thus, the
 existence of hidden variables implies the existence of a large number of predic
 tion functions. Every homomorphism h : 31 —» R is by restriction a homo
 morphism of the partial Boolean algebra of idempotents onto Z2. The following
 theorem characterizes the imbedding of a partial Boolean algebra into a Boolean
 algebra in terms of its homomorphisms onto Z2.

 Theorem 0. Let % be a partial Boolean algebra. A necessary and sufficient
 condition that 31 is imbeddable in a Boolean algebra B is that jor every pair of
 distinct elements a, b in 31 there is a homomorphism h: 31 —» Z2 such that h{a) =t= h(b).

 Proof. Suppose : 31 —* B is an imbedding. Since <p(a) =t= <p(b) if a =t= b>
 there exists by the semi-simplicity property of Boolean algebras (see e.g.)
 Haimos [8, sect. 18, Lemma 1]), a homomorphism h :B —> Z2 such that h<p(a) =t=
 h<p(b). Hence k = h<p is the required homomorphism of 31 onto Z2 .

 To prove the converse, let S be the set of all non-trivial homomorphisms
 of 31 into Z2. Define the map <f> : 31 —» Z \ by letting <p(a) be the function g : S —>
 Z2 such that g(h) = h (a) for every h e S. Then it is easily checked that <p is an
 imbedding of 31 into the Boolean algebra Z\.

 The next two sections are devoted to showing that there does not exist
 even a single homomorphism of the partial Boolean algebra (B of the propositions
 of quantum mechanics onto Z2 .

 3. The partial Boolean algebra B(E3). Let B(E ") denote the partial Boolean
 algebra of linear subspaces of a-dimensional Euclidean space E". Our aim in
 this section is to show that there is a finite partial Boolean subalgebra D of
 B (22s) such that there is no homomorphism h : D —> Z2 . In the next section we
 shall show that the elements of D in fact correspond to quantum mechanical
 observables.

 Let D be a partial Boolean subalgebra of B(E3) with a homomorphism h : D—>
 Z2 . If S] , s2 , s3 are mutually orthogonal one-dimensional linear subspaces of
 D, then

 h(Si) \J h(s2) U h(s3) = /i(sj VJ s2 W s3) = h(E3) = 1 and

 ® h(s.) n h(sj) = h(ßi r\ Sj) = h(0) = 0
 for 1 ^ i =t= j g 3. Hence, exactly one of every three mutually orthogonal lines
 is mapped by h onto 1. If we replace the lines by lines of unit length then h
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 68  S. KOCHEN & E. P. SPECKER

 induces a map h* : T —* {0, 1} from a subset T of the unit sphere S into {0, 1}
 such that for any three mutually orthogonal points in T exactly one is mapped
 by h* into 1.
 It will be convenient in what follows to represent points on S by the vertices

 of a graph. Two vertices which are joined by an edge in the graph represent
 orthogonal points on S. When we say that a graph r is realizable on S we mean
 that there is an assignment of points of S to the vertices of T, distinct points
 for distinct vertices, with the orthogonality relations as indicated in r.

 Lemma 1. The following graph I\ is realizable on S.

 In fact, if p and q are points on S stich that 0 ^ sin Q ^ f where 6 is the angle
 subtended, by p and q at the center of S, then there exists a map u : I\ —> S such
 that u(a0) = p and u(ag) = q.

 Proof. Since u(as) is orthogonal to u(a0) W u(a9) and u{a7) is orthogonal
 to u(aH), u(a7) lies in the plane u(a0) U w(a9). Also since u(a7) is orthogonal
 to u(a9), we have that <p = it/2 — 8, where <p is the angle subtended at the
 center of S by u(a0) and u(a7). Let w(a5) = % and w(a„) = k. Then we may take

 w(«i) = (j + xk)(l + x2)~1/2 and u(a2) = (l + yj)( 1 + y2)~m.

 The orthogonality conditions then force

 u(a3) = (xj - k)( 1 + x2yin,

 u(a4) = (yï - J) (1 + y2)~1/2,
 and hence,

 u(a0) = (xyl - xj + ic)(l + x2 + x2y2)~U2,

 u(a7) = (i + yj + xyic)( 1 + y2 + x2y2)~1/2.
 Thus

 xy

 C0S^-((i + z2 + zyxi + ^ + zW/2'
 By elementary calculus the maximum value of this expression is f. Hence Ti
 is realizable if 0 ^ cos <p ^ |, i.e., 0 ^ sin 0 ^

 Lemma 2. The following graph r2 is realizable on S.
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 QUANTUM MECHANICS  69

 The graph r2 is obtained from the above diagram by identifying the -points pa
 and a, q0 and b, and r0 and c. The vertices of r2 are the points on the rim of this
 diagram.

 Proof. For 0 ^ k g 4, let
 t, irk _ . . irk _
 Pk = cos — i + sin — J,

 „ irk ... irk
 Qk = C°S + sin — fc,

 n • irk _ . irk
 Äi, = sm — z + cos Yq k.

 Let u(pk) = Pt , «(gi) = Qt , u(rk) = Iik , for 0 S H 4. Since the subgraph
 of r2 contained between the points Po , Pi , and r0 is a copy of Tj and the angle
 subtended by P0 , Pi is it/ 10 (sin t/10 < we may extend m to a realization
 of this subgraph on S. A realization of the subgraph of r2 contained between
 the points Pi , p2 , and r0 is then obtained by rotating P0 to Pi about R0 . The
 remainder of the realization u is obtained by similar rotations about Iin , P0 ,
 and Qo .

 Let T be the image of r2 under u, consisting of 117 points on S. Let D be
 the partial Boolean subalgebra generated by T in B (E3). (This corresponds
 to completing the graph r2 so that every edge lies in a triangle. In the resulting
 graph the points and edges correspond to one and two dimensional linear sub
 spaces of B(P3) respectively.)
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 Theorem 1. The finite partial Boolean algebra D has no homomorphism
 onto Z2.

 Proof. As we have seen, such a homomorphism h : D —> Z2 induces a map
 h* : T —> {0, 1} satisfying condition (6). Reverting to the graph r2 , we shall
 assume that there is a map k : r3 —> {0, 1} satisfying condition (6). Let us
 consider the action of k on a copy in r2 of the graph I\ . Suppose that k(a0) — 1,
 then it follows that k(aa) = 1. For if /;(a9) = 0, then since k(a&) = 0 we must
 have k(a7) — 1. Hence, k(ai) = k(a2) = k(a3) = k(at) = 0; so that k{a-) =
 k(as) = 1, a contradiction.

 Now since p0 , q0 , and r0 lie in a triangle in r2 , exactly one of these points
 is mapped by k onto 1, say k(p0) = 1. Hence, by the above argument k(pi) = 1.
 Continuing in this manner in r2 we find k(p2) = k(p3) = fc(p4) = k(q0) = 1.
 But k(q0) = 1 contradicts the condition that k(p0) = 1, and proves the theorem.

 Remark. Theorem 1 implies that there is no map of the sphere S onto
 {0, 1} satisfying condition (4), and hence no homomorphism from B(E3) onto
 Z2 • This result, first stated in Specker [17], can be obtained more simply either
 by a direct topological argument or by applying a theorem of Gleason [6].
 However, it seems to us important in the demonstration of the non-existence
 of hidden variables that we deal with a small finite partial Boolean algebra.
 For otherwise a reasonable objection can be raised that in fact it is not physically
 meaningful to assume that there are a continuum number of quantum mechanical
 propositions.

 To obtain a partial Boolean subalgebra of B(7?3) which is not imbeddable
 in a Boolean algebra a far smaller graph than r2 suffices. The following graph
 r3 may be shown to be realizable on S in similar fashion to the proof of Lemma 2.

 a

 Let F be the partial Boolean algebra generated by the set of 17 points on S
 corresponding to r3 . If h : F —> Z2 is a homomorphism then as we have seen
 in the proof of Theorem 1, if h{a) = 1 then h(b) = 1; by symmetry also h(b) = 1
 implies h(a) — 1. That is, h(a) = h(b) in every homomorphism h : F —» Z2 .
 If <p : F —» B is an imbedding of F into a Boolean algebra, then by the semi
 simplicity of B there exists a homomorphism h' : B —> Z2 such that h'(<p(a)) 4=
 h'(cp(b)). Hence, h = h'<p is a homomorphism from F onto Z2 such that h(a) 4=
 h(b), a contradiction.
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 4. The operators as observables. Let us consider a system in which the
 total angular momentum operator «7 commutes with the Hamiltonian operator
 H, so that J is a constant of the motion. We assume further that the system is
 in a state for which the principal quantum number n = 2 and the azimuthal
 quantum number j — 1, so that the total angular momentum is V2h. The
 eigenspace N corresponding to the eigenvalue 2h2 of J2 is three-dimensional.
 We adopt the convention that ft = 1.

 Let Jx , Jv , and J, be the components of J in three mutually orthogonal
 directions x, y, and z. We shall show that in the three dimensional representation
 given by n = 2, j = 1 the following relations hold.

 (7)  VI , Jl] = [Jl , Jl] = [J2. , Jl] = 0.

 In the usual representation in which J2 and J, are diagonal we have (see
 Schiff [14] p. 146)

 J. =
 1

 V2

 1 0 0

 0 0 0

 0 0 -1J

 Jx =
 V2

 0 1 0

 1 0 1

 0 1 0

 T =

 Jv V2

 0 -i 0

 i 0 —i

 10 i 0.

 It is now easily checked that the relations (7) follow. It may be of some
 interest to give a coordinate-free proof of these relations. The following proof
 was suggested to us by J. Chaiken. Let J± = Jx± iJv. From the commutation
 relations [Jx , J„] = iJ,, etc., for Jx, Jy, and J, it follows that

 [Jl , Jl] = (J, - I)Jl ~ {J, + I)J- .

 Now if J.ip = then

 \(m + 1)/+^ if

 l 0 if m — j.
 JJ+Tp =

 Hence, if <p is any vector in the three-dimensional representation (n = 2,
 j = 1), then Jlf is either zero or an eigenvector of J, with eigenvalue +1.
 In either case, (J, — I)J+<p = 0. Hence (J, — /)/+ = 0 in this representation.
 Similarly, (J, + T)J1 = 0, so that [J2 , </2] = 0. This establishes (7). Note
 that these relations do not hold in any higher dimensional representation.

 We now show that there is an imbedding \p of the partial Boolean algebra
 B (Ez) into the partial Boolean algebra ® of quantum mechanical proposition.
 Let P be the projection operator belonging to the 3-dimensional eigenspace
 N. To each one-dimensional linear subspace a of E3 there corresponds an
 operator Ja , the component of angular momentum in the direction in phys
 ical space defined by a. Let \p(a) — PJl . If ß is a two-dimensional linear
 subspace of E3 let a be the orthogonal complement of ß in E3. We define \p(ß) =
 P — PJl . Finally we let ^P(E3) = P and ^(0) = 0. This defines the map \p.
 To show that ^ is an imbedding it clearly suffices to prove that if a and ß are
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 orthogonal one-dimensional linear subspaces of E3, then [PJl , PJ}} = 0.
 But this is precisely the relation (7) which we have established. Note that the
 projection operator PJl is an element of ®; it corresponds to the proposition
 Pa : "For the system in energy state n = 2 and total angular momentum state
 j = 1, the component of angular momentum in the direction a is not 0."
 Since then the finite partial Boolean algebra D has been imbedded in (B,

 it follows by Section 3 that that there is no homomorphism of (B onto Z2 .
 In the above argument we have assumed that in the three-dimensional

 representation the observables J\ , J] and J] are commeasurable. This remains
 to be justified. Of course, we have seen that these operators commute and it
 is a generally accepted assumption of quantum mechanics that commuting
 operators correspond to commeasurable observables. A rationale for this as
 sumption, as we pointed out in Section 2, is that if A(, i 1I, is a set of mutually
 pairwise commuting self-adjoint operators, then there exists a self-adjoint
 operator B and Borel functions /,• , i t I such that A{ — ji(B). However this
 justification hinges on the existence of a physical observable which corresponds
 to the operator B. We shall now show that there is in this case an operator Hj
 of which Jl, Pv , and J] are functions and which corresponds to an observable.
 Let a, b, and c be distinct real numbers and define

 H j = aJl + bJl + cJ\ .

 Then it is easily checked that in the three dimensional representation

 Jl = (a - b)~\c - - (6 + c))(ff, - 2a),

 (8) Jl = (b — c)~\a - by\Hj - (c + a))(Hj - 2b),

 Jl = (c - a)~\b - cr\Hj - (a + b))(Hj - 2c).

 Consider now a physical system the total angular momentum of which is
 spin angular momentum S, with S having the constant value V2h. An example
 of such a system is an atom of orthohelium in the 23Sl state, i.e., the lowest
 triplet state of helium, with the principal quantum number n = 2, the orbital
 quantum number I = 0, and spin s = 1. (Note that this is a stable state for the
 atom even though it is not the ground state. (It is called a metastable state.)
 The reason for the stability is that the ground state (n = 1) of the atom occurs
 only for parahelium, i.e., the singlet state of helium with s = 0; and transitions
 are forbidden between the singlet and the triplet states of helium.).

 We now apply to the system in this state a small electric field E which has
 rhombic symmetry about the atom. (Such a field, for instance, results from
 placing point charges at the points (±w, 0, 0), (0, zkv, 0) (0, 0, ±w), with u,
 v, and w distinct, the atom being at the origin.) By perturbation methods it
 may be shown that the Hamiltonian H of the system is perturbed to a new
 Hamiltonian H + Hs , where, from the rhombic symmetry of the field, the
 additional term H3, called the spin-Hamiltonian, has the form Hs = aSl +
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 QUANTUM MECHANICS  73

 bS2v + cS] with a, b, and c distinct in the three dimensional representation.
 (See e.g., Stevens [18] and Pryce [13] for a proof.)

 Thus the operator Hs = aSl + bS2u + cS] corresponds to a physical ob
 servable—the change in the energy of the lowest orbital state of orthohelium
 resulting from the application of a small electric field with rhombic symmetry.
 The change in energy levels may be measured by studying the spectrum of the
 helium atom after the field is applied. The possible measured values in the
 change in energy levels is either a + b, b + c, or c + a, since these are the eigen
 values of H s in the three-dimensional representation. Since a, b, and c are
 distinct, so are a + b, b + c, and c + a. Thus, a measurement of IIs leads
 immediately to the simultaneous measurement of S2X, S2 and <S*. If, for instance
 the measured value of H3 is a + b, then we infer that the values of SI and SI
 are each 1 and the value of S2, is 0. (This is equivalent to applying the relations
 (8) to H s.)

 We remark that although such an experiment has probably not been carried
 out on the helium atom, related experiments are described in the literature.
 For instance Griffith and Owen [7] investigated in paramagnetic resonance
 experiments a nickel Tulton salt, nickel fiuosilicate. This salt consists of a
 nickel ion surrounded by an octahedron of water molecules and it occurs in
 the state J2 — S2 = 2h2. The water molecules form a crystalline electric field
 with rhombic symmetry about the nickel ion. The resulting spin-Hamiltonian
 H s takes the form aSl + bS2v + cS] with a, b, and c distinct. This is in all respects
 similar to the situation we have discussed above. Of course, in this case the
 electric field is supplied by the ciystal and cannot be switched on and off or
 rotated at will to measure S2X , S\ , and S] in any three prescribed orthogonal
 directions. Nevertheless, the experimental agreement with the quantum me
 chanical predictions here suggests a similar agreement for the case of an external
 electric field applied to a helium atom.

 To sum up the last two sections we shall recapitulate our case against the
 existence of hidden variables for quantum mechanics. We have used the formal
 technique of introducing the concept of a partial algebra to discuss this question
 but we may now give a direct intuitive argument. If a physicist X believes in
 hidden variables he should be able to predict (in theory) the measured value
 of every quantum mechanical observable. We now confront X with the problem
 of simultaneously answering the question:

 "Is the component of spin angular momentum in the direction a equal to
 zero for the lowest orbital state of orthohelium (n = 2,1 = 0, s = 1)"
 where a varies over the 117 directions provided in the proof of Theorem 1.
 For each such prediction by X we can find, by Theorem 1, three orthogonal
 directions x, y, z among the 117 for which this prediction contradicts the state
 ment

 "Exactly one of the three components of spin angular momentum S, , Sy ,
 S, of the lowest orbital state of orthohelium is zero."
 This statement is what is predicted by quantum mechanics since
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 Si + Si + S] = S2 = 2 h2

 and each of S2X , SI , S2 thus has the value 0 or ti. Thus the prediction of X
 contradicts the prediction of quantum mechanics. Furthermore as we have
 seen in this section this prediction may be experimentally verified by simul
 taneously measuring S2X , S2y , and . Our conclusion is that every prediction
 by physicist X may be contradicted by experiment. (It has been argued (See
 Böhm [2 Sect. 9]) that with the introduction of a hidden state space Q the
 present quantum mechanical observables such as spin will not be the fun
 damental observables of the new theory. Certainly, many new possible ob
 servables are thereby introduced (namely, functions / : Ö —» R). The quantum
 observables represent not true observables of the system itself which is under
 study, but reflect rather properties of the disturbed system and the apparatus.
 This is nevertheless no argument against the above proof. For in a classical
 interpretation of quantum mechanics observables such as spin will still be
 functions on the phase space of the combined apparatus and system and as
 such should be simultaneously predictable).

 5. Homomorphic relations. In Section 1 we reduced the question of hidden
 variables to the existence of an imbedding of Q into a commutative algebra C.
 We discuss here a possible objection to this reduction. It may be argued that
 in a classical reinterpretation of quantum mechanics a given observable may
 split into several new observables. Thus, the correspondence between Q and C
 may take the form of a homomorphism ^ : C —» Q from C onto Q. This pos
 sibility is provided for in the following theorem.

 Definition. Let 91 and £ be partial algebras over a common field K. A
 relation R Ç 91 X £ is called a homomorphic relation between 91 and £ if, for
 all x 9 y in 91 and a $ ß in £, R(x, a) and R(y, ß) imply that R(\x + py, \a + nß)
 and R(xy, aß) for every X, p e K and also R(l, 1).

 The homomorphic relation R Q UL X £ has domain 91 if for all x e 91 there
 is an a e £ such that R(x, a). The relation R is non-trivial if not R(l, 0).
 If ip : 91 —» £ is a homomorphism then the graph of <p, i.e., the relation R(x, a)

 defined by <p(x) = a, is a non-trivial homomorphic relation with domain 91.
 Similarly a homomorphism ^ : £ —» 91 of £ onto 91 defines the non-trivial
 homomorphic relation R with domain 91 by taking R(x, a) if \p(a) = x.

 Theorem. 2. Let 31 be a partial algebra and assume that there exists a non-trivial
 homomorphic relation R with domain 91 between 91 and a commutative algebra C.
 Then there exists a commutative algebra C' and a homomorphism h : 91 —» C'
 ■from 91 onto C'.

 Proof. Let S be the set of all elements a in C such that R(x, a) for some
 x e 91. Let S be the subalgebra generated by S in C. Define I to be the set of all
 a t C such that R(0, a). Then I is clearly closed under linear combinations. Next
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 let ß c S, so that

 ß = 23 hßilßii • ' • ßini

 for some e if, and e S.
 If a 11, then aß^ e I. Hence aß = S,- X< aj8n • • • ßini 11. Finally, 1 $ I. We

 have shown that 7 is a proper ideal of the algebra S. Let C = S/I and let <p : S —>
 C be the canonical homomorphism. Define h : ÏÏL —> C' by h(x) = <p(a) where
 a t S is such that R(x, a). Then it is easily checked that h is well-defined and
 a homomorphism.

 If we now take 91 to be the partial algebra Q, it follows from this theorem that
 there is no non-trivial homomorphic relation with domain Q between Q and a
 commutative algebra.

 6. A classical model of electron spin. We prove here that the problem of
 hidden variables as we have formulated it in Section 1 has a positive solution
 for a restricted part of quantum mechanics. The portion of quantum mechanics
 with which we deal is obtained by restricting our Hilbert space to be two
 dimensional. Thus, the state vectors are assumed to range over two-dimensional
 unitary space U2, and the observables to range over the set Ht of two-dimensional
 self-adjoint operators.

 As will be seen, the problem reduces to considering the case of spin operators.
 Thus, our problem becomes essentially that of constructing a classical model
 for a single particle of spin f, say an electron. Needless to say, we do not maintain
 that this classical model of electron spin remains valid in the general context
 of quantum mechanics. In fact, as was shown in Section 4, there exists a system
 of two electrons in a suitable external field such that there is no classical model

 for the spin of the system.
 Our aim in constructing a classical model for electron spin is two-fold. In

 the first place, we wish to exhibit a classical interpretation of a part of quantum
 mechanics so that it may be compared with various attempts to introduce
 hidden variables into quantum mechanics. We believe these attempts to be
 unsuccessful, so it would be as well if we could give an example of what is for
 us a successful introduction of hidden variables into a theory. In the second
 place, we shall use this model in discussing von Neumann's proof in [19] of
 the non-existence of hidden variables.

 As formulated in Section 1, our problem is to define a "phase" space 0 such
 that for each operator A t H2 there is a real-valued function fA : Ü —> R and
 for each vector ^ e Uz there exists a probability measure on fi such that

 (I) fuiA) — u(jA) for each (Borel) function w; and
 (II) the quantum mechanical expectation
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 Let V be the set of operators in H2 of trace zero. V forms a 3-dimensional
 vector space over R. This is easily seen by noting that the Pauli spin matrices

 0 1

 1 0.
 cr„ =

 0 -i

 i 0J

 =

 1 0

 0 -1J

 form an orthonormal basis for V. If we assign to (<rz , <r„ , u,) an orthonormal
 basis (i, j, k) in 3-dimensional Euclidean space E3, we obtain a vector isomorphism
 P : V —> E3. To every spin matrix <r, i.e., a matrix a in V with eigenvalues ±1,
 there corresponds under the map P a point P„ on the unit sphere S2 in E3.
 Physically, one speaks of the spin matrix a as corresponding to the observable
 "the spin angular momentum of the electron (say) in the direction 0P„," where
 0 is the origin in E3.
 Now let A be any matrix in H2 with distinct eigenvalues Xj , X2 . We let

 Then a(A) is a spin matrix such that the eigenvectors of cr{A) corresponding
 to +1 and — 1 are the same as the eigenvectors of A corresponding to \ and
 X2 respectively.
 We are now ready to choose the appropriate space 0 and functions fA . For

 Q we choose S2. If A e H2 with distinct eigenvalues Xi and X2 , we let

 U(p) =
 Xi  for p e Sp,(i)

 otherwise.

 Here Spr(A) denotes the upper hemisphere of S2 with the North Pole at P,u) •
 If the eigenvalues of A are equal, so that A = X7, say, then we let

 1a(p) = X, for all p t S2.

 With this definition, it is a simple matter to check that the condition (I):
 1«u> == w(/^.) holds. We need only note that for 2-dimensional operators it is
 sufficient to consider linear functions: u(A) = aA + ßl, with a, ß e R. Then
 condition (I) follows immediately from the fact that aaÄ+ßi = <rA .

 Next we wish to assign a probability measure ^ to each vector £ U2. Let
 denote the spin matrix for which \p is the eigenvector belonging to the eigen

 value + 1. We may thus assign to each \p t U2 a point Pa+ of S2. We shall write
 for P„f . Physically, if ip is the state vector of an electron, then the electron

 is said to have "spin in the direction 0P#
 To delimit the problem and at the same time to obtain a solution with natural

 isotropy properties, we shall assume that the probability measures ^ satisfy
 the following conditions:

 (a) For each \p t XJ2, the measure pj, arises from a continuous probability
 density u+(p) on S2, so that
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 77

 E

 for every measurable subset E of S2.
 (b) The probability density u^(p) is a function only of the angle 6 subtended

 at 0 by the points p and P+ on S2. We may thus write Uj, (9) for the function u^(p).
 (c) Let u(9)( = w*„(0)) be the probability density assigned to the state vector

 (Note that = a,, so that = (0, 0, 1).) Let t U2. If a is the polar angle
 of the point Pj, on S2, then we assume that u^(d) = u(d + a). Thus, the prob
 ability takes the same functional form for all states \f/.

 (d) We assume that u{6) — 0 for 9 > ir/2.

 An examination of the problem shows that these are natural properties to assign
 to the quantum states considered as probability distributions over the hid
 den states. We shall show that there do exist measures satisfying the above
 conditions as well as condition (II). In fact, we shall see that these conditions
 determine the density functions u+ uniquely.

 Using these assumptions we may simplify the problem of finding measures
 Ht which satisfy condition (II) as follows. Since fA is a linear function of A,
 the integral J0 /A(w) dß^(u) is a linear function of A. On the other hand the
 expectation function (A\p, \p) is also a linear function of A. Since every matrix
 A in H2 is a linear function of a projection matrix, it is sufficient to verify condi
 tion (II) for projection matrices. Next, by condition (c) we may assume that

 so that P+ = (0, 0, 1). Furthermore, by condition (b), it is sufficient to consider
 the case where P„U) has azimuthal angle equal to zero. In what follows we
 shall make the above assumptions on A and \j/.

 It is now necessary to express the expectation (A\f/, \p) as a function of the
 angle subtended at 0 by the points P+ = (0, 0, 1) and P,U) > i-e-> as a function
 of the polar angle p of P,u) •

 In spherical polar coordinates we may write
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 COS (p/2)
 V —

 sin (p/2).

 Since A was assumed to be a projection matrix, ?? is also the eigenvector of A
 belonging to the eigenvalue +1. Thus,

 (M, i) - (it, v)v, <A>

 = |<*, ri)\3

 = cos2 (p/2).

 Our problem is thus reduced to solving for u{6) the integral equation

 cos2 (p/2) = [ fA(p)u(d) dp.
 J S1

 Since

 Wp)-!1 on «•"'
 1.0 otherwise

 this equation becomes

 cos2 (p/2) = [ u(0) dp
 J t

 where T = C\ . Thus,
 /. r/i nf I

 cos2 (p/2) = I / u(6) sin 6 d<p dO
 J p-r/2 J-<p6

 where tpi is the azimuthal angle of the point Q = (sin 6 cos <pt, sin 6 sin <ps, cos 0)
 with polar angle 9 which lies on the great circle C perpendicular to the point
 P.u> = (sin p, 0, cos p).
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 Using the orthogonality of Q and Pa(A) , we have

 sin p sin 9 cos <pe + cos p cos 9 = 0

 or

 <pB = cos-1 (—cot p cot 9).

 Thus

 pr/2
 |(1 + cos p) = 2 / u{9) sin 9 cos-1 (—cot p cot 9) d9.

 J f-r/2

 Letting x — p — ir/2, we have

 ï(l — sin x) = — 2 f u(9) sin 9 cos"1 (cot 0tan x) d9.
 J r/2

 Now, differentiating both sides with respect to x, we obtain

 „ ,n . -i , . , \ , r w(0)sin 0 cot 0 sec3 a?
 —I cos a: = —2u(x) sin a; cos (cot x tan x) + j n _ cot2 g tan2 x)ui

 or,

 3 a f iA/\wJ v jn
 COS X = — 4 / 71 ,2 ——2 7Î72 dO.

 J T/a (1 — cot 0 tan a:)

 If we set z = cos2 x, s = cos2 0, and w(s) = u(0), we find

 r 2w(s) ,
 s-i. M®4

 This is a special case of Abel's integral equation, and is easily solved by Laplace
 transforms. Namely, if * denotes convolution and L(f) = /Ö f(x)e~u dx, the
 Laplace transform, then

 z = w * 2z_l/2.

 Hence,

 L(z) = L(w)L(2z~1/2),

 L(w) = L(z)/L(2z~1/2)

 — fm

 u{9) cos 9

 2VÏ

 = L((l/ir)s1/2),

 so that

 w(s) = (l/x)s1/2.
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 We thus have shown that

 <e) = j(lA) cos 0 if x/2
 [0 otherwise.

 On the basis of this mathematical solution, we may construct a simple classical
 model of electron spin. The same model then serves (by linearity) for the more
 general case of operators in H2.

 We start with a sphere with fixed center 0. A point P on the sphere represents
 the quantum state "spin in the direction OP". If the sphere is in such a quantum
 state it is at the same time in a hidden state which is represented by another
 point T t Sp . The point T has been determined as follows. A disk D of the same
 radius as the sphere is placed perpendicular to the OP axis with center directly
 above P. A particle is placed on the disk and the disk shaken "randomly".
 That is the disk is so shaken that the probability of the particle being in a
 region U in D is proportional to the area of U (i.e., the probability is uniformly
 distributed). The point T is the orthogonal projection of the particle (after
 shaking) onto the sphere. It is easily seen that the probability density function
 for the projection is given by

 U(T) = G0S 9 ° - 6 ~ T//2
 10 otherwise,

 where 6 is the angle subtended by T and P at 0.
 Suppose we now wish to measure the spin angular momentum in a direction

 0Q. This is determined as follows. If T e Sq , then the spin angular momentum
 is +h/2, if T $ Sq then the spin is — h/2. The sphere is now in the new quantum
 state of spin in the direction 0Q if T e Sq or spin in the direction QQ* (where
 Q* is the antipodal point of Q) if T t S*Q . The new hidden state of the sphere
 is now determined as before, by shaking the particle on the disk D, the disk
 being placed with center above Q if T t Sq or with center above Q* if T i Sq .
 It should be clear from the preceding analysis that the probabilities and ex

 pectations that arise from this model are precisely the same as those arising
 from quantum mechanical calculations for free electron spin. In the model
 the disk D, the particle, and its projection are to be considered as the hidden
 apparatus. The probabilities arise through the ignorance of the observer of the
 sphere of the actual location of the particle on the disk. To an observer of the
 complete system of sphere and disk the model is a deterministic classical system.
 Note that in the above model we could keep the disk fixed vertically above

 the sphere and instead rotate the sphere to determine each new hidden state.
 If we now further replace the shaking disk by a random vertically falling water
 drop, we may say that rain falling on a ball forms a classical model of electron
 spin.

 We remark finally that the conditions (I) and (II) say nothing about the
 propagation of the probabilities in time. That is to say, although these conditions
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 give the probabilities arising at each experiment, they do not deal with the
 change of probabilities during the time between experiments. However, in
 the situation we are examining of free electron spin this causes no difficulty
 since every state is in this case stationary, and the probabilities remain con
 stant in the time between experiments.

 We now consider the bearing of this model on von Neumann's discussion
 of the hidden variables problem given in [19, Chapter IV]. In that chapter
 von Neumann gives what he considers to be a necessary condition for the ex
 istence of hidden variables for quantum mechanics. This condition is the ex
 istence of a function

 &:H-> R,

 where H is the set of self-adjoint operators, such that

 (1) 8(7) = 1.
 (2) 8(aA) — aS(A), for all a c R, A t H.
 (3) 8(A2) = S2(A), for all A t H.
 (4) 8 (A + B) = 8(A) + 8(B), for all A, B t H.

 In [19] it is then shown that there does not exist a function satisfying these
 conditions. (In [19] a further condition is added on 8: (5) If A is "essentially
 positive" then 8(4) ^ 0. But we shall not require this condition in our proof.)
 We present another proof below. This is done for two reasons. First, our proof
 is simpler, and is in fact trivial. Second, this proof shows that there is even
 no function 8 : H2 —> R satisfying conditions (l)-(4), a result we require for
 our later discussion.

 Lemma. If the junction 8 : H —» R satisfies (1)—(3) together with condition

 (4)' 8(4 + B) = 8(A) + 8(B), for all A, B t H such that AB — BA,

 then &(AB) = S(A)S(B), jor all A, BzH such that AB = BA. (In the terminology
 of Section 2, 8 is thus a homomorphism of the partial algebra H into R.)

 Proof. Assume AB = BA. Then

 S2(A) + 28(A)8(B) + S2(B) = (8 (A) + 8(5))2

 = 82(A + B)

 = S((A+£)2)

 = 8(A2 + 2 AB + B2)

 = S^2) + 8(2 AB) + 8(ß2)

 = S2(A) + 2&(AB) + 82(jB).
 Hence, 8(4)8(ß) = &(AB).

 Corollary. If the function 8 satisfies conditions (1), (2), (3), (4)', then 8(A)
 lies in the spectrum of A.
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 Proof. Suppose to the contrary that A — 8(A) has an inverse B. Then by
 the Lemma,

 i = m

 = S((A - S(A))B)

 = 8(A - 8(A))8(£)

 = (S(A) - S(S(A))S(B)

 = (8(A) - 8(A))S(£)

 = 0.

 Theorem. 3. There is no junction 8 : H —> R satisfying conditions (l)-(4).

 Proof. Consider the two matrices

 a - f1 °],
 .0 Oj U 1

 The matrices A and B are projection matrices and hence have eigenvalues 0
 and 1. The matrix A + B has eigenvalues 1 ± Hence, S(A + £)=*=
 8(A) + 8(5), by the above corollary.

 As the proof shows, there is no function 8 with properties (l)-(4) even when
 the domain of 8 is restricted to H2 .

 Now, von Neumann's criterion has been criticized in the literature in requiring
 the additivity of 8 even for non-commuting operators, i.e., in requiring condi
 tion (4) rather than (4)'. (See for example Hermann [9, pp. 99-104].) As the
 above Lemma shows, it is precisely on this point that von Neumann's criterion
 differs from our point of view. For we showed that there does not exist a func
 tion satisfying (1), (2), (3), and (4)'. We may now go further. We have here
 constructed a classical system C (the sphere and the disk). From this system
 we obtained a new system Q (the sphere without the disk) such that the pure
 states of Q are certain mixed states of C and the observables of Q are among
 the observables of C. The pure states of Q may then be described by vectors in
 U2 and the observables of Q by operators in H2, just as in quantum mechanics.
 If we now accept von Neumann's criterion, we must conclude that we cannot
 introduce hidden variables into the system Q. But this can hardly be a reasonable
 conclusion, since we may reintroduce into Q the states and observables of C
 which we ignored in forming Q, to recover the classical system C.

 7. The logic of quantum mechanics. In this section we discuss the non
 existence of an imbedding of (B into a Boolean algebra from a different point
 of view. It will turn out that a consequence of this result is that the logic of
 quantum mechanics is different from classical logic. Since the set of propositions
 of a classical physical theory forms a Boolean algebra B it follows that the
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 propositions valid in such a theory are precisely the classical tautologies. This
 means that if we are given a classical tautology such as

 (9) xx A (x2 A x3) = (a?! A x2) A x3

 then every substitution of elements of B for xt , x2 , x3 yields the element 1
 of B. In the case of a theory such as quantum mechanics where the set of pro
 positions form a partial Boolean algebra (B it is not clear what it means for a
 proposition to be valid. To take the preceding proposition (9) as an example,
 it is not possible to substitute arbitrary elements of , a2 , a3 of (B for xx ,
 x2, x3 . It is necessary in this case that the commeasurability relations a2 9 a3,

 9 a2 , 9 a2 A a3 , A a2 9 a3 , and ax A (a2 A a3) 9 (ai A a2) A a3 be
 satisfied, to allow an application of the partial operations in (B. A proposition
 is then valid in (B if every such "meaningful" substitution of elements yields,
 the element 1 of (B.

 A Boolean function <p(xi , • • • , xn) such as (9) may be considered as a poly
 nomial over Z2. We shall now give a formal definition for a polynomial
 <p(Xi ,•••,£„) over a field K to be identically 1 in a partial algebra 91 over K. We
 first recursively define the domain Dv of <p(xi, • • • , x„) in 31. We simultaneously
 define a map <p* corresponding to <p(x! , • • • , xn). Dv is a subset of the n-fold
 Cartesian product 91" of 91 and <p* is a map from D„ into 91. Let a = (ax, • • • , a»)
 be an arbitrary element of 9ln.

 1. If (p is the polynomial 1, then D<p = 91" and <p*(a) — 1.
 2. If <f> is the polynomial x, (i = 1, 2, • • • , n), then D<p = 91" and <p*(a) = a,.
 3. If ip — kip with k e K, then Dv = and <p*{a) = k\p*(a).
 4. If <p = ^ 0 x (where ® is either + or •)> then a e if and only if a t

 D* H Dx and 4>*{a) $ x*(a); <p*(a) = yp*(a) 0 x*(o).

 We say that the identity p(xi ,•••,£„) = 1 holds in 91 if <p*(a) = 1 for all
 azDv . More generally, if <p(xi, • • • , xn) and \p(xi, ••• ,x„) are two polynomials
 over K, we shall say that the identity <p{xl , ••• , xn) = \}/{xi , , xn) holds
 in 91 if <p*(a) = ^*(a) for all a e Dv f~\ .

 Let ip(xi , • • • , xn) be a prepositional (i.e., a Boolean) function. Then
 <p(xi ,• • *, xn) may be considered as a polynomial over Z2 . Let 91 be a partial
 Boolean algebra. Then <p is valid in 91 if the identity <p = l holds in 91. If for some
 o e D9 we have <p*(a)=0, then <p is rejutable in 91. If <p and ^ are two prepositional
 functions, then <p — is valid in 91 if the identity <p — i holds in 91. We illustrate
 these definitions with an example. We shall show that the tautology (9) is valid
 in every partial Boolean algebra 91. In fact, we show that the identity Xi A
 (x2 A x3) = (xi A x2) A x3 is valid in 91; this means that we do not require
 that ai A (a2 A a3) 9 (ai A a2) A a3. To see this note that if aÀ 9 o3, V 9 a2,
 Û! 9 a2 A a3 , A a2 9 a3 then

 ax A (a2 A a3) = ax A (a2 A (a3 A a3))

 = (ai A a2) A (a2 A a3).
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 The last equality holds because the elements a1 , a2 and a2 A a3 are pairwise
 conuneasurable and hence by the definition of a partial algebra generate a
 Boolean algebra in 91. Similarly, {ax A a2) A a3 = (c^ A a2) A (a2 A a3),
 proving the result.
 In the case of quantum mechanics these considerations are more than theo

 retical possibilities, they occur in ordinary reasoning about physical systems.
 For instance, the orbital angular momentum L of an atom is commeasurable
 with the spin angular momentum S. If the system has spherical symmetry
 then a component of L + S(= total angular momentum J) is commeasurable
 with the Hamiltonian H, although components of L and S are separately not
 commeasurable with H. Thus a statement specifying H and a component of
 L + S is of the type considered here.
 If 91 is a Boolean algebra this definition of validity coincides with the usual

 definition. In that case the set of valid propositional functions coincides with
 the classical tautologies, i.e., those propositional functions which are valid
 in Z2. In the following theorem we connect the validity of classical tautologies
 in a partial Boolean algebra 91 with the imbeddability of 91 into a Boolean
 algebra.

 For the sake of obtaining a complete correspondence in this theorem we
 introduce the following weakening of the notion of imbedding. rfi

 Definition. Let 91, £ be partial Boolean algebras. A homomorphism <p : 91 —* £
 is a weak imbedding of 91 into £ if <p(a) A= <p(b) whenever a Q b and a 4= b in 91.
 Thus a weak imbedding is a homomorphism which is an imbedding on Boolean
 subalgebras of 91.

 The counterpart of Theorem 0 of Section 2 is that 91 is weakly imbeddable
 in a Boolean algebra if and only if for every non-zero element a in 91 there is
 a homomorphism h : 91 —> Z2 such that h (a) 4= 0.

 Theorem 4. Let 91 be a partial Boolean algebra.

 1. 91 is imbeddable into a Boolean algebra if and only if, for every classical
 tautology of the form <p = \p, <p = \[/ is valid in 91.

 2. 91 is weakly imbeddable into a Boolean algebra if and only if every classical
 tautology <p is valid in 91.

 3. 91 may be mapped homomorphically into a Boolean algebra if and only if
 every classical tautology <p is not refutable in 91.

 Proof. The necessity of the condition in each case is clear. We shall give
 a uniform proof of sufficiency for the three cases where 91 satisfies the condition
 that 91 is (1) imbeddable, (2) weakly imbeddable or (3) mapped homomorphically
 into a Boolean algebra. Let

 * = 1,2

 i = 3,

 i = 1

 i = 2, 3
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 Let Ki be the set of all equations of the form a + /3 = 7or£?? = f which
 subsist among elements of 91. (In the language of model theory, Kx denotes
 the positive statements from the diagram of 31.) Let K2 be the elementary
 axioms describing the class of Boolean algebras. Write K = Ki^J K2 . Then
 the class of all models of K consist precisely of the homomorphic images of 91
 which are Boolean algebras.

 Suppose now that 31 does not satisfy condition (i) (i = 1, 2, or 3). Then by
 Theorem 0 and its counterpart for weak imbeddings there exist two distinct
 elements a, b in 31 such that for every Boolean algebra B and every homo
 morphism h : 31 —» B we have A(s,(a)) = h(ti(b)). Since then s,(a) and <<(6)
 are identified in every model of K, we have by the Completeness Theorem
 for the Predicate Calculus that

 K U(<0 = Üb).

 Hence, there is a finite subset

 L = {a, + ß,- = y, , &??* = ft I 1 ^ j ^ n, 1 g k ^ m]

 of Ki such that

 K2 U L \- s,(a) = U(b)

 so that

 K2 f- (A (a/ + ßj + = 0) A A (£*17* + ft = 0)) —» Si(a) = <<(&)
 i k

 K2 |- (V (a,- + ßj + + ft) = 0) —» Si (a) = <,(6),
 J

 i.e., Ä"2 I- p(«! , • • • , fm) = 0 -*■ 8i(a) = <i(6) where

 p(«i > • ' • , f«) = V (a,- + ßi + 7i)(£*It + ft)
 I*

 Since the constants «j, • • • , f m , a, & do not occur in i£2, we may replace them
 by variables Xt , • • • , xn, x, y to obtain

 (10) K2 [- pfo , • • • , xn) = 0 -* s{(x) = f<(j/).

 Hence, the implication pfo, • • • , xn) = 0 —> s^x) = <<(2/) is valid in all Boolean
 algebras. Let

 <p denote s,(x) —» p

 and

 \p denote <<(2/) —* P

 Then it follows from (10) that <p = i is Boolean identity, i.e., p = is a classical
 tautology. (Note that for i = 2, 3, ^ = 1 so that <p = ^ reduces to <?.) On the
 other hand the substitution of the elements a, , • • • , fra , s<(o), i<(6) from 91
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 for the variables xx , • • • , xn , s,(x), t{(y) yields a value 0 for p, and hence a
 value s<(a)' for <p and ti(b)' for (Here u' denotes 1 — w.) Hence, under this
 valuation of <p and ^ in 31, we have

 ip = a', — b', so that <p 4= \f/, for i = 1

 = a', so that <p 4= 1, for i = 2

 <p = 0, for i = 3,

 proving the theorem.
 Since in the case of quantum mechanics there is, by Theorem 1, no homo

 morphism of D onto Z2 , we obtain the following consequence of Theorem 4.

 Corollary. There is a 'pro-positional formula <p which is a classical tautology
 but which is jalse under a (meaningful) substitution of quantum mechanical proposi
 tions for the propositional variables of <p.

 It is in fact not difficult to construct such a formula. Assign to each one
 dimensional linear subspace L, of D a distinct propositional variable x{ . To
 each orthogonal triple L, , Lj , Lk of D assign the Boolean function

 Xi + Xj + Xk + XiXfXk .

 Note that classically this formula is valid if and only if exactly one of xt , x, ,
 xt is valid. Hence the formula

 <P = 1 - II fa + + x" + xixix*)>

 where the product extends over all orthogonal triples of D, is classically valid,
 by Theorem 1. On the other hand, the substitution of the quantum mechanical
 statement of Section 4 for each x{ makes <p false since each factor of the
 product takes the value 1. Thus, the formula <p is the formal counterpart of the
 argument given at the end of Section 4. Actually, the formula ip is uneconomical
 in the number of variables used. A more judicious choice of variables correspond
 ing to the graph r2 yields a formula in 86 variables which is classically valid
 and quantum mechanically refutable.

 This way of viewing the results of Sections 3 and 4, seems to us to display
 a new feature of quantum mechanics in its departure from classical mechanics.
 It is of course true that the Uncertainty Principle, say, already marks a de
 parture from classical physics. However, the statement of the Uncertainty
 Principle involves two observables which are not commeasurable, and so may
 be refuted in the future with the addition of new states. This is the view of those

 who believe in hidden variables. Thus, the Uncertainly Principle as applied to
 the two-dimensional situation described in Section 6 becomes inapplicable
 once the system is imbedded in the classical one. The statement <f>(Pi , ••• , Pn)
 we have constructed deals only in each of the steps of its construction with
 commeasurable observables, and so cannot be refuted at a later date.
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