
A Historical Note on Group Contractions

Erdal İnönü
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I wish to welcome you to this meeting and hope that you will find it interesting

and rewarding. It was organised, essentially, following the suggestions of Drs. Kim,

Pogosyan, Gromov and Duru, that we should once more bring together people interested

in various aspects of deformations of Lie groups, including quantum groups and the

simplest case of contractions. I am happy to see that quite a few researchers have

found time to come and join us here. The organising committee has asked me to give

an introductory talk, as one of the two co-authors of one of the first papers on group

contractions. Actually, since almost half a century passed since this paper was published

in June 1953, 44 years ago to be exact, it can be considered as part of science history.

Furthermore, as I am nowadays more interested in writing memoirs, rather than following

current research developments, I shall tell you the story of this article. It has some

interesting and instructive aspects from both scientific and human points of view and it

will be a tribute to the memory of Prof. Wigner. In the beginning I must tell you that

I completed all the requirements for a Ph.D. degree at CalTech in October of 1951, and

then came to Princeton University as a visiting research fellow, to spend something like

six months doing research, before going back to my native country, Turkey. My thesis

was a phenomenological piece of work, applying the shower theory of Oppenheimer and

Snyder to cosmic ray bursts observed by the team of Neher from CalTech. It had nothing

to do with group theory. But my reason for coming to Princeton was to do something

in group theory, which fascinated me, although at that time I knew very little about it.

I had learned from my elders at CalTech that E.P.Wigner was a world famous authority

in group theory (as in many other areas). During the previous summer I had visited him

at the University of Wisconsin where he was working and told him of my wish to come

to Princeton following the completion of my Ph.D. work at CalTech. After receiving a

favourable letter from Prof. Christy, my thesis advisor, he invited me to spend the new

academic year at Princeton. In our first meeting in his office at Palmer Laboratory in

Princeton, I gave him the details of my education at CalTech and expressed my desire

to work with him on a problem in group theory. He asked me a few questions in group

theory and found out that my knowledge was very meagre in this field. He did not say

anything about whether or not he was going to give me any problems , but at the end

of our conservation , he very kindly invited me to have lunch at the cafeteria.

While we were waiting in line for our turn to take our meals, another member of the
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physics department came along and shook hands with Wigner. He introduced me to

the newcomer who asked me what I did at CalTech. I replied by saying, ”Prof. Christy

was kind enough to propose a problem involving cosmic ray showers which provided

indirect evidence for the existence of neutral pi mesons.” I was giving this information

automatically, without any afterthought, but at the same time I noticed that Wigner

was touched as if I were implying that so far Princeton had not been as kind to me as

CalTech.

Whatever may be the reason, after lunch Wigner took me back to his office and

proposed to me to work on determining the unitary irreducible representations of the

inhomogeneous Galilee group. As I looked somewhat perplexed, he explained that this

would be a way to find in quantum mechanics, the most general equations of motion

for a non-relativistic particle and that I could follow the same methods that he had

developed previously for the Lorentz group.

Prof. Wigner’s classical paper on the unitary irreducible representations of the in-

homogeneous Lorentz group or the Poincaré group to be more precise, had appeared in

1939 [1] but its importance was being realised only in the fifties. He gave me a reprint

and then together we went to the library, where for my reading we collected a few books

on group theory. His own book was available only in German. He asked me whether

I could read German and when I replied saying that I could do it with the help of a

dictionary, he said, ”Well, it will be hard going, but you can do it”. He then added a

very interesting comment: ”Of course, what is really important is imagination!” More

than a month went by while I studied the essentials of group theory and read several

times his paper on the Lorentz group. Then I started to work on the Galilei represen-

tations, benefiting from his advice all the time. I suspect that he already knew how

these representations will turn out to be, but he did not say it. He only guided me in

determining them.

There happens to be four classes of unitary irreducible representations. The most

general one may be written in the following form which is diagonal in space translations

and boosts (special Galilei transformations) and where the wave functions depend on

two vectors ~p, ~q [3]:

T (~a)ψ(~p, ~q ) = ei~p·~a ψ(~p, ~q )

G(~v)ψ(~p, ~q ) = ei~q·~v ψ(~p, ~q ) (1)

Θ(b)ψ(~p, ~q ) = ψ(~p, ~q − b~p )

O(R)ψ(~p, ~q ) = ψ(R−1~p,R−1~q )

In this most general case, the wave functions are characterised by the positive num-

bers P and S where:

P 2 = ~p · ~p , S = |~p× ~q | . (2)

T (~a) is the operator for a space translation by the vector ~a, G(~v) is the operator for

a boost, ~x′ = ~x− ~vt, where ~v is the constant velocity vector, Θ(b) is the operator for a
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translation in time by the amount b and O(R) is the operator for a rotation denoted by

the matrix R.

We could define a scalar product in the Hilbert space of the functions ψ(~p, ~q) by the

expression:

(ψ, φ) =
∫
ψ(~p, ~q) φ(~p, ~q) δ(~p2 − P 2) δ( | ~p× ~q | −S ) d~p d~q . (3)

The next step in Wigner’s programme was to find a physical meaning for these

representations. Following the example of the Lorentz case, we assumed that they would

represent a single particle. But here we found an unexpected result. If a representation

ψ is to describe a particle localised at x = y = z = 0 at time t = 0, it will be orthogonal

to the function T (~a)ψ, for ~a 6= 0 [2]. In other words, we must have

(T (~a)ψ , ψ) = 0 (4)

or, ∫
ei~p·~a |ψ(~p, ~q)|2 δ(~p2 − P 2) δ( | ~p× ~q | −S ) d~p d~q = 0 (5)

But this can be reduced to
sinPa

Pa
= 0 (6)

which is not possible. Thus, we concluded that these representations could not describe

localised particles.

We have also looked for states with definite velocity, but could not find them ei-

ther. So the unescapable conclusion was that the irreducible unitary representations of

the inhomogeneous Galilei group could not be interpreted as describing non-relativistic

particles. On the other hand, it was known that the free particle solutions of the non-

relativistic Schrödinger equation corresponded to the up-to-a factor representations of

the inhomogeneous Galilei group.

The classical argument of Wigner went as follows :

In quantum mechanics, the transition probability between two states ψ , φ defined

as |(ψ, φ)|2 must be invariant with respect to the change of reference frames :

|(φg, ψg)|2 = |(φg′ , ψg′)|2 (7)

where g, g′ denote two different reference frames.

We can define a linear, unitary operator D(N) such that, φg′ = D(N)φg where N is

the transformation which carries g into g′:

g′ = Ng (8)

The operator D(N) is determined by the physical theory only up to a constant of

modulus unity which can depend on g and g′. So, the D(N) form a representation up

to a factor of the invariance group :

D(N1)D(N2) = ω(N1, N2)D(N1N2) (9)
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where ω is a complex number whose phase may depend on N1, N2 but its modulus

is unity, i.e.:

ω = eiu(N1,N2) (10)

In the case of the Poincaré group, Wigner was able to assign a definite phase to

each operator D(N), leaving only the sign undetermined. He thus obtained, for the

normalised operators U(P ),

U(P1)U(P2) = ∓U(P1P2) (11)

Applying similar arguments to the Galilei group, I obtained the following relation:

U(G1)U(G2) = ∓ exp
{
−2πiA(~a2 · ~v1 +

1

2
b2 v

2
1)

}
U(G1G2) (12)

where A is an arbitrary constant. This is essentially the representation formed by the

plane wave solutions of the non-relativistic Schrödinger equation for a particle with mass

m, spin zero and momentum ~p:

ψ(~p) = exp

{
2πi

h
(~p · ~x− p2

2m
t)

}
(13)

which yields, taking the positive sign for spin zero,

U(G1)U(G2)ψ(~p) = + exp
{
−2πi

m

h
(~a2 · ~v1 +

1

2
b2 v

2
1)

}
(14)

so that we have here A = −m
h

[4].

When I reached this point, the original programme proposed to me by Wigner was

completed and I started to write the paper on the Galilei representations. But a question

remained: How is it that, the true representations of the Poincare group have a physical

meaning while those of the Galilei group do not? Or, in other words, how does the

physical meaning disappear when one goes over from the Poincaré group to the Galilei

group? We thought that at least a partial answer could be obtained by looking at the

limits for infinite light velocity of the specific unitary representations of the Poincaré

group obtained by Wigner. The idea was to add an appendix to our Galilei paper,

giving the results of this limiting process.

However, when I tried to take the limits of the unitary representations of the Poincaré

group, the outcome became incomprehensible. The limiting process gave a finite answer

in some cases, but vanished altogether in other cases. After we struggled for a couple

of weeks without obtaining consistent results, Wigner had the bright idea of separating

the problem into its essential components. He said : ”Let us first look at the limit of

the group, understand what happens there, and then consider the limits of the represen-

tations.” This approach gave the clue for solving our difficulties. When we considered
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a singular transformation on the infinitesimal generators Iλ of the original n-parameter

Lie group, in the following form given by Wigner,

J1ν = I1ν

J2µ = εI2µ
where

ν = 1, 2, . . . , r

µ = 1, 2, . . . , n− r
(15)

and took the limit for ε → 0, everything became clear and simple. Let the Lie algebra

of the original group be given by:

[Iκ , Iλ] =
n∑

τ=1

cτκλ Iτ (16)

Applying the above-mentioned transformation, we obtain the new algebra as:

[J1ν , J1µ] = [I1ν , I1µ] =
r∑

κ=1

c1κ
1ν,1µ I1κ +

n−r∑
λ=1

c2λ
1ν,1µ I2λ

=
r∑

κ=1

c1κ
1ν,1µ J1κ +

1

ε

n−r∑
λ=1

c2λ
1ν,1µ J2λ,

[J1ν , J2µ] = ε [I1ν , I2µ] = ε
r∑

κ=1

c1κ
1ν,2µ J1κ +

n−r∑
λ=1

c2λ
1ν,2µ J2λ, (17)

[J2ν , J2µ] = ε2 [I2ν , I2µ] = ε2
r∑

κ=1

c1κ
2ν,2µ J1κ + ε

n−r∑
λ=1

c2λ
2ν,2µ J2λ.

Now, taking the limit for ε→ 0, we see that, the new algebra will give finite results only

if c2λ
1ν,1µ = 0, in other words, only if the infinitesimal generators I1ν span a subalgebra.

In this case, the new Lie algebra will have the form:

[J1ν , J1µ] =
r∑

κ=1

c1κ
1ν,1µ J1κ,

[J1ν , J2µ] =
n−r∑
κ=1

c2κ
1ν,2µ J2κ, (18)

[J2ν , J2µ] = 0.

The conclusion is that if the operators I1µ, formed a subgroup S originally, we would

always obtain a new group by taking the limit for ε → 0. The operators I2µ lead to an

invariant abelian subgroup. The subgroup S with respect to which the limiting operation

is carried out, is isomorphic with the factor group of this invariant subgroup. In a sense,

we are contracting the original group over the subgroup S which remains invariant, and

this is why we named this process a contraction. Once we saw this picture, it was

clear that the process could be applied to many groups, one of the simplest examples

being the three dimensional rotation group. Contracting O(3), we obtain E(2), the

two dimensional Euclidean group, rotations and displacements in the plane. On the

other hand, what we considered was such a simple process that for a while, we did
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not believe that it was something unknown until that time. Wigner asked Bargmann

about it. Bargmann, who knew the literature extensively was surprised, but admitted

that he had not seen this process defined previously. I looked at the collected works of

Sophus Lie, but did not find it mentioned, so we decided that it was something original.

Wigner, then told me that it would not be correct to put it as an appendix to the paper

on the Galilei representations, since it seemed to have a more general area of application.

Bargmann noticed later that, Segal, in a paper published in 1951 [5], had considered

a sequence of Lie groups which converges to another Lie group. When we looked at

the representations of the contracted group, the situation which had puzzled us before,

became resolved. If we apply the contraction directly to the infinitesimal operators of

the representation, we do obtain a representation of the contracted group; but in general

it will not be faithful. It would be a representation isomorphic to the subgroup with

respect to which contraction is taken or, in other words, it will be a representation of the

factor group of the invariant subgroup. In order to obtain a faithful representation of the

contracted group, one can either carry out first an ε-dependent transformation on the I2ν

or take the operators J2ν which correspond to different representations, i.e., go to higher

and higher dimensional representations. Using these methods, I was able to contract the

representations of the Poincaré group and show in fact that, the true representations

of the Galilei group for which we did not find any physical meaning, are the limits of

the unphysical representations of the Poincaré group corresponding to space-like or null

momenta. On the other hand, those representations with time-like momenta can only

be contracted to up-to-a factor representations of the Galilei group, corresponding to

the solutions of the Schrödinger equation. After we reached that stage, I returned to

Turkey and the paper on contractions was completed through correspondence [6]. To

complete the human side let me make two final observations. The story shows, at first,

how we came to the simple idea of group contraction by a very roundabout way and

secondly, how I was lucky to have asked Wigner to give me a problem at the right time.
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